• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New insights into blood vessel growth

Bioengineer by Bioengineer
May 7, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FRANKFURT. How new blood vessels form in mammals, for example during development or after injury, was so far not known exactly. Scientists at the Goethe University have now been able to shed light on this process. They have shown that single cells in the innermost layer of blood vessels proliferate after injury and in so doing make a significant contribution to the formation of new vessels.

Observation in the living organism – and especially in the heart – of how new blood vessels form is not possible in mammals. That is why only endpoints can ever be seen, i.e. that new veins and arteries have formed and of what type of cells they consist. However, little is known to date about the actual process of new vessel formation, although this knowledge could contribute in future to remedying tissue damage, such as occurs in diabetes or following an ischemia-induced heart attack.

That is the reason why Professor Stefanie Dimmeler and her fellow researchers at the Institute of Cardiovascular Regeneration of Goethe University Frankfurt have studied the fate of single cells in the innermost vascular layer, i.e. the endothelial cells, during development and after tissue damage in what are known as Confetti mice. In these models, the researchers can mark specific cell types and distinguish between them with the help of fluorescent proteins. In the models used, only endothelial cells fluoresced in three different colors. Since the cells continue to fluoresce when they divide, single endothelial cells and their "progeny" can be tracked. In so doing, the scientists sought to answer the question of whether cell division in the formation of new blood vessels, as known from zebrafish, takes place more or less randomly or whether specific cells divide again and again to produce new vessels.

Clonal expansion after a heart attack

In damaged heart tissue following a heart attack, the researchers were able to observe that certain cells had divided repeatedly. They also detected this cell division, which is referred to as clonal expansion, in damaged tissue in skeletal muscles caused by ischemia. To do so, they analyzed the fluorescence in endothelial cells in tissue slices taken from the damaged areas. They found the ratio of clonally expanding cells – between 30 and 50 percent – very surprising. "But perhaps we're even underestimating the ratio of clonal expansion," presumes Dimmeler. "Because after all we haven't conducted a three-dimensional analysis but instead identified the fluorescing cells in two-dimensional tissue slices." In addition, further experiments showed that the vessels formed through clonal expansion are also supplied with blood and thus able to function.

In new-born models, by contrast, Professor Dimmeler and her team did not observe any clonal expansion in the formation of new vessels in the retina. It would therefore seem that the growth of blood vessels during normal development results from the random multiplication and integration of cells. This result coincides with observations in zebrafish, in which what is known as "cell mixing" also plays an important role in the formation of new blood vessels during development.

Cell profiling

The researchers were keen to characterize the dividing cells more precisely and to this purpose they analyzed which genes are transcribed in single examples of the clonally expanding endothelial cells. "Surprisingly, we found a large number of gene products that are typical for the transition from an endothelial to a mesenchymal cell," says Dimmeler. This transition, or EndMT process, is a contributor in many pathogenic processes, such as scarring or arteriosclerosis. In endothelial cells, the gene products typical for EndMT do not, however, mirror a transition but instead presumably just an intermediate stage that enables the cells to detach themselves from the cell assembly in order to multiply.

Clonal expansion as possible therapy for heart attack patients

Dimmeler and her team now want to find out what happens with the clonally expanded cells in the long term, since at present they are only able to track their fate for about two months. "We want to know what has happened to these cells after a year and whether the new blood vessels are just as good as the old ones in the long term," says Dimmeler.

Is clonal expansion different in older patients? This is another question she finds fascinating. "It might be that clonal expansion is no longer that efficient in older people, which is why a lot of damaged tissue dies off after a heart attack and forms scar tissue which cannot be reactivated through the formation of new blood vessels," says Dimmeler. "If we manage to characterize the clonally expanding cells more precisely, we will hopefully find ways to re-stimulate this process."

###

Original publication: Clonal Expansion of Endothelial Cells Contributes to Ischemia-Induced Neovascularization. Manavski, Y., Lucas, T., Glaser, S. F., Dorsheimer, L., Gunther, S., Braun, T., Rieger, M. A., Zeiher, A. M., Boon, R. A. & Dimmeler, S. Circulation research 122, 670-677, (2018).

DOI: 10.1161/CIRCRESAHA.117.312310.

Further information: Professor Stefanie Dimmeler, Institute of Cardiovascular Regeneration, University Hospital Frankfurt, Tel.: +49(0)69-6301-7440; Email: [email protected]

Media Contact

Stefanie Dimmeler
[email protected]
49-069-630-17440
@goetheuni

http://www.uni-frankfurt.de

http://dx.doi.org/10.1161/CIRCRESAHA.117.312310.

Share13Tweet7Share2ShareShareShare1

Related Posts

Forensic Imaging Uncovers Torture in Asylum Seekers

September 18, 2025

Repeated Head Trauma Drives Neuron Loss, Inflammation

September 18, 2025

Durable Perovskite Cells via Toughened Monolayers

September 18, 2025

Vitamins’ Role and Mechanisms in Obesity Control

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analog Speech Recognition via Physical Computing

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Forensic Imaging Uncovers Torture in Asylum Seekers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.