• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New approach in the fight against antibiotic resistance

Bioengineer by Bioengineer
May 7, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to the WHO, around 700,000 people die every year as a result of antibiotic resistance. In Germany, around 6,000 people die every year because treatment with antibiotics is not effective. Scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the University of Oxford have now discovered that there is a point in the production process of the proteins at which it can be regulated by bacteria. This could be used as a starting point for the development of new antibiotics and help overcome resistance to antibiotics.

Antibiotics are used in the treatment of bacterial infections. They kill and inhibit the growth of bacteria, allowing the infection to subside and the patient to recover. However, during the last few years, increasing numbers of bacteria have developed so-called antibiotic resistance, which means they are resistant to the effects of antibiotics. Over time, these types of medication become ineffective and multi-resistant bacteria become even more widespread as a result.

Investigation of early phase of RNA synthesis

The discovery made by scientists, which has now been published in the scientific journal Nature Communications, could be a completely new starting point in developing antibiotics. 'New drugs could now be developed on the basis of our findings that kill the bacteria that cause illnesses', hopes Dr. David Dulin from the Interdisciplinary Centre for Clinical Research at FAU. The FAU team led by Dr. David Dulin and the team led by Achillefs Kapanidis at the University of Oxford have discovered that the early phase of ribonucleic acid (RNA) production is the key to controlling the regulation of bacterial gene expression. Gene expression is the term used to describe how a gene product coded by a gene is is formed . These products are often proteins, or RNA molecules.

In bacteria, the RNA is produced using a large protein complex called RNA polymerase (RNAP). The RNAP reads the DNA sequence and builds a copy of the RNA by joining nucleotides together – the fundamental building blocks of RNA – during a process called transcription. Since this production of RNA is fundamental for the survival of the bacteria, it has already been the subject of intensive research and used as the starting point for developing antibiotics, for example for the treatment of tuberculosis. However, it remained unclear how the production of RNA is also regulated at the stage of early transcription when RNAP has just begun to join together the first few RNA building blocks. This was the subject of the research carried out by the team of scientists.

The researchers used high-end fluorescence microscopy, which allowed them to monitor individual RNAP molecules as they started to produce RNA. They discovered that the initial RNA synthesis is strongly regulated – a certain sequence of DNA forces the RNAP to pause for several seconds. It can only continue with RNA production after this pause.

This discovery completely changes our previous understanding of initial RNA synthesis in bacteria. 'The fact that the RNAP can be simultaneously bound to the DNA and the short piece of RNA for a longer period of time was very surprising, as it contradicts current knowledge,' says Dr. Dulin. The discovery of this new checkpoint in gene expression could be used for the development of new antibiotics. 'For example, it may be possible to develop medication that locks the RNAP in the paused state, thus killing the bacteria that cause illnesses,' says Dr. Dulin. A glimmer of hope in the global struggle against antibiotic resistance.

###

Media Contact

FAU Press Office
[email protected]
49-913-185-70229
@FAU_Germany

http://www.uni-erlangen.de

https://www.fau.eu/2018/04/25/news/research/new-approach-in-the-fight-against-antibiotic-resistance/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-03902-9

Share13Tweet7Share2ShareShareShare1

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.