• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Wriggling tadpoles may hold clue to how autism develops

Bioengineer by Bioengineer
May 3, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA– May 3, 2018 –You could say Hollis Cline's lab at The Scripps Research Institute is building better tadpoles.

To better understand how humans learn, Cline, PhD, Hahn Professor of Neuroscience and co-chair of the Department of Neuroscience, leads experiments designed to spark learning in tadpole brains. Over the years, her lab's work with tadpoles has shed light on neuroplasticity–how new experiences flood brain cells with proteins that fuel brain development and learning.

Now the lab's latest study, published in eLife, suggests a key to neuroplasticity is not just the presence of new proteins, but how the brain makes proteins in the first place. The research also points to a possible new role for proteins in sensory processing in some people with autism spectrum disorder.

"The idea that visual experience can influence how we make proteins is something brand new," Cline says. "This is interesting to think about because we live in a very busy sensory world."

The researchers used tadpoles that naturally have translucent skin–which makes them an excellent model for peering into the wirings of a living brain. The tadpoles were kept in the dark and then exposed to either ambient light (for the control group) or a screen with moving bars (simulating normal visual experience) for four hours.

Working closely with Professor John Yates, PhD, of the Scripps Research Department of Molecular Medicine, Cline's team measured changes in protein expression–the production of proteins in cells–before and after each experiment. They found that the expression of 83 proteins shifted either up or down in the experimental group.

Many of these were effector proteins–the proteins doing specific jobs in cells. But the team also spotted three outliers: proteins eIF3A, FUS and RPS17. These three are regulatory proteins, meaning they construct the machinery that makes the effector proteins further down the line. Cline was surprised. She and her colleagues always thought regulatory protein expression would hold steady even when visual experience varied.

"We just thought the regulatory machine would be just humming along," Cline says. "So, we were surprised to see them on our list. We thought, 'Is this accurate? Is this true?'"

It turned out that these regulatory proteins are essential for learning from visual experience. Cells are better at building connections and reinforcing learning when they synthesize these proteins at a certain rate during visual experience.

In fact, researchers could tag neurons with fluorescent proteins to see the physical signature that visual experience left in the brain. Thanks to eIF3A, FUS and RPS17, tadpoles had significant neuronal growth–seen in how their neurons sent out branch-like tendrils–after just four hours of visual experience.

Next, the scientists investigated whether changes in protein expression affected tadpole behavior. How important were these proteins for teaching tadpoles?

To find out, the researchers took advantage of a natural tadpole behavior: the instinct to avoid any large shape that may be a looming predator. The researchers had tadpoles swim above a screen that projected large, predator-like spots. Then they tracked whether a tadpole would turn to avoid the dark spots.

The tadpoles with exposure to visual experience did significantly better on the avoidance test than tadpoles in the control group. This suggests they had formed the neural circuits to better process visual information. Interestingly, tadpoles did not do as well on the test–even after exposure to visual experience–when they could not express all three key proteins (eIF3A, FUS and RPS17). This finding further confirmed the importance of the regulatory proteins in neuronal plasticity.

Finally, the researchers were curious whether the 83 total proteins they identified were expressed differently in human brain disorders, so they cross referenced their list with two databases–one of people with risk factors for autism spectrum disorders, and one with people with fragile X syndrome, which has similar characteristics as autism.

The results came as a surprise. Twenty-five percent of the proteins on the Scripps Research list overlapped with the database lists of genes thought to cause autism spectrum disorder and fragile X syndrome. That was a much bigger number than Cline expected, and it prompts new questions about what makes an autism "risk factor" actually risky.

Cline thinks mutations in regulatory proteins might keep some people from expressing the other proteins needed for processing sights, smells, textures, tastes and sounds. "This brings to mind a new dimension for understanding autism," Cline says.

Cline says future studies could focus on understanding all 83 synthesized proteins. She says the work has also made her consider the visual experience humans take in every day.

"It's fascinating to think about how sensory experience affects the brains of our children," says Cline. "We may wittingly or unwittingly affect how their brains develop."

###

Additional authors of the study, "Role of the visual experience-dependent nascent proteome in neuronal plasticity," were first author Han-Hsuan Liu, Daniel B. McClatchy, and Lucio Schiapparelli of Scripps Research; and Wanhua Shen of Scripps Research and Hangzhou Normal University.

The study was supported by the National Institutes of Health (grants EY011261, EY019005, MH099799, MH067880 and MH100175), DartNeuroScience LLC, the Helen Dorris Foundation and an endowment from the Hahn Family Foundation.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

https://www.scripps.edu/news/press/2018/20180513-autism-brain-neuroscience.html

Related Journal Article

http://dx.doi.org/10.7554/eLife.33420

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers to Patient-Reported Outcomes in Rheumatoid Arthritis

Barriers to Patient-Reported Outcomes in Rheumatoid Arthritis

August 24, 2025
blank

Exploring Multi-Dimensional Depths of Metagenomics

August 24, 2025

Impact of Meal Replacement on Intermittent Fasting Success

August 24, 2025

Integrating Life Stories for Patient-Centered Care

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    131 shares
    Share 52 Tweet 33
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers to Patient-Reported Outcomes in Rheumatoid Arthritis

Snake Secretions Repel and Poison Ants

Climate Change Effects on Northern Ethiopia’s Farmers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.