• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research identifies unconventional immune cell capable of fighting viral infections

Bioengineer by Bioengineer
May 2, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research led by the University of Birmingham has identified a novel unconventional type of immune cell capable of fighting viral infections.

The study, published today in Nature Communications and carried out in collaboration with the Academic Medical Center, Netherlands, and Skolkovo Institute of Science and Technology, Russia, focussed on T cells that control our immune system.

Specifically the research has defined a subset of 'unconventional V-delta-2 lymphocytes', which are a type of Gamma Delta T cell – an ancient class of immune cell that has been relatively poorly understood.

The new findings establish that this subtype is not only present at birth, but persists in adults at low levels, and can increase in numbers massively during virus infections.

The researchers examined how this subtype of T cell responded to a virus infection called cytomegalovirus. They found that when these T cells detected signs of the virus infection they both increased in numbers and became 'licensed to kill'.

Lead Author Dr Martin Davey, of the University of Birmingham's Institute of Immunology and Immunotherapy, said:

"These cells can clearly adapt to some key challenges that life throws at them.

"Upon viral infection, they change from harmless precursors into what appear to be ruthless killers.

"They can then access tissues, where we believe they detect and destroy virally infected target cells."

The results build on previous work from the same research group, published last month in Trends in Immunology, which also suggests that many gamma delta T cells that control our immune system can adapt in the face of infectious challenges.

The team is now trying to better understand the scenarios when these unconventional killer T cells are most important and how to harness them to advance treatments to fight viral infections.

Dr Davey added: "We think these cells contribute to defence against viral infection in the liver, a site which is exposed to many potentially dangerous infectious diseases.

"They may also be particularly important when other aspects of our immune system are not working at full strength, such as in newborn babies, but also in transplant patients who are taking immunosuppressive drugs to prevent organ rejection.

"In these scenarios, boosting the activity of these cells could prove beneficial to patients, and we are now starting to explore how to do that."

###

For more information please contact Emma McKinney, Communications Manager (Health Sciences), University of Birmingham, by emailing [email protected] or call +44 (0)121 414 6681. Alternatively, contact the Press Office out of hours on +44 (0)7789 921165.

Notes to editors:

  • The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 5,000 international students from over 150 countries.
  • Davey et al. (2018). 'The human Vδ2+ T cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets' Nature Communications DOI:10.1038/s41467-018-04076-0
  • Davey et al. (2018). 'Recasting Human Vδ1 Lymphocytes in an Adaptive Role.' Trends in Immunology DOI:10.1016/j.it.2018.03.003
  • Both studies were funded by the Wellcome Trust.

Media Contact

Emma McKinney
[email protected]
44-012-141-46681
@unibirmingham

http://www.bham.ac.uk

http://dx.doi.org/10.1038/s41467-018-04076-0

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

August 24, 2025
blank

Body-Positive Social Media’s Influence on Body Image

August 24, 2025

Future Innovations in Cardiovascular and Metabolic Medicine

August 24, 2025

Challenges and Supports for Universal Health Coverage in Uganda

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    83 shares
    Share 33 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

Cinnamon Extracts: Impact on Musca domestica Responses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.