• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel theranostic approach for treating pancreatic cancer patients shows promise

Bioengineer by Bioengineer
May 1, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: RP Baum, THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany

RESTON, Va – German researchers have developed a novel diagnostic and therapeutic (theranostic) procedure for patients with ductal pancreatic adenocarcinoma, a deadly cancer with an extremely poor prognosis (five-year survival rate of less than 5 percent) and limited treatment options. The study is featured in the May issue of The Journal of Nuclear Medicine.

In early preclinical studies with animal models, the novel procedure significantly inhibited tumor growth. Focusing on the neurotensin receptor 1 (NTR1), a protein that is overexpressed in ductal pancreatic adenocarcinoma, researchers developed a DOTA-conjugated NTR1 antagonist 3BP-227 labeled with the radioisotope lutetium-177 (177Lu) to treat and monitor therapy.

For this study, 6 patients with confirmed metastatic ductal pancreatic adenocarcinoma, who had exhausted all other treatment options, received 177Lu-3BP-227 as salvage therapy. Scintigraphy and single-photon emission computed tomography was used with computed tomography (SPECT/CT) to determine the tumor uptake and the patients' eligibility for treatment. If the patient's condition allowed, 18F-FDG positron emission tomography (PET)/CT imaging was performed 8-12 weeks after therapy to determine treatment efficacy.

177Lu-3BP-227 was well tolerated by all patients, with the most severe adverse reaction a reversible grade 2 anemia. One patient experienced significant improvement of symptoms and quality of life–surviving 13 months from diagnosis and 11 months from the start of 177Lu-3BP-227 therapy.

This study provides the first clinical evidence of the feasibility of treating ductal pancreatic adenocarcinoma using 177Lu-3BP-227.

"The research presented warrants further development of 177Lu-3BP-227, in order to provide patients with more effective treatment and less side effects than cytotoxic chemotherapy," explains Christiane Smerling, PhD, head of Nuclear Medicine and Imaging at 3B Pharmaceuticals GmbH in Berlin, Germany.

She points out, "Exploiting a hitherto underexplored receptor, these findings broaden the scope of nuclear medicine treatment for pancreatic adenocarcinoma and potentially other indications expressing neurotensin receptors, such as Ewing sarcoma. A theranostic approach using molecular imaging to identify potential responders will allow more effective treatment of a highly underserved patient population."

###

Authors of "177Lu-3BP-227 for "Neurotensin Receptor 1-Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results" include Richard P. Baum, Aviral Singh, Christiane Schuchardt, Harshad R. Kulkarni, Ingo Klette, and Stefan Wiessalla, THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and Frank Osterkamp, Ulrich Reineke, and Christiane Smerling, 3B Pharmaceuticals GmbH, Berlin, Germany.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at (703) 652-6773 or [email protected]. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

ABOUT THE SOCIETY OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 15,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Media Contact

Laurie Callahan
[email protected]
@SNM_MI

http://www.snm.org

Original Source

http://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=28682 http://dx.doi.org/10.2967/jnumed.117.193847

Share14Tweet7Share2ShareShareShare1

Related Posts

Targeting Lipid Metabolism to Enhance Antitumor Immunity

September 19, 2025

Uncovering Gaps in Rehab for Hospitalized Patients

September 19, 2025

Collaborating on European Data Science for Seniors

September 19, 2025

Intraoperative Ventilation Approaches for Thoracic Surgery

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.