• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study identifies new target for treatment of pulmonary hypertension

Bioengineer by Bioengineer
April 30, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago have identified a gene called FoxM1 as a promising target for treatment of pulmonary hypertension, or high blood pressure in the lung arteries. Patients with this severe lung disease that damages the right side of the heart have a five-year survival rate of 50 percent. The study results, published in the American Journal of Respiratory and Critical Care Medicine, will drive development of new drugs to reverse a process called vascular remodeling, or thickening of lung artery walls – a key feature in pulmonary hypertension.

"Currently we do not have drugs that target vascular remodeling in pulmonary hypertension," says lead author Zhiyu Dai, PhD, from the Manne Research Institute at Lurie Children's, who also is a Research Assistant Professor of Pediatrics at Northwestern University Feinberg School of Medicine. "Our study shows that when we deleted the FoxM1 gene in the smooth muscle cells of the artery in mice, the result was thinner artery walls, reduced blood pressure in the lung and improved right heart function. We can use a compound against FoxM1 to reverse vascular remodeling in rat models of the disease. "

FoxM1 gene controls cell growth and its function has been studied in cancer proliferation. Research on this gene is still in the preclinical stage. Dr. Dai and colleagues were the first to use a genetically modified mouse model to establish the role of FoxM1 in pulmonary hypertension. Without this gene in smooth muscle cells, the mouse does not grow thicker artery walls and so does not develop high blood pressure in the lung.

Dr. Dai and colleagues also discovered that in pulmonary hypertension, the FoxM1 gene is turned on by many growth factors that are released by damaged endothelial cells, which line the inner wall of the artery. Endothelial cell damage is considered to be the initial event in the development of pulmonary hypertension. Signals from the released growth factors induce FoxM1 gene expression to increase production of smooth muscle cells in the middle layer of the artery wall, which causes artery wall thickening.

"We will now focus on developing new drugs that will inhibit the FoxM1 gene and hopefully improve outcomes for patients with pulmonary hypertension," says Dr. Dai.

###

This project was supported in part by grants from the National Institutes of Health.

Research at Ann & Robert H. Lurie Children's Hospital of Chicago is conducted through the Stanley Manne Children's Research Institute. The Manne Research Institute is focused on improving child health, transforming pediatric medicine and ensuring healthier futures through the relentless pursuit of knowledge. Lurie Children's is ranked as one of the nation's top children's hospitals in the U.S.News & World Report. It is the pediatric training ground for Northwestern University Feinberg School of Medicine. Last year, the hospital served more than 208,000 children from 50 states and 58 countries.

Media Contact

Julie Pesch
[email protected]
312-227-4261

https://www.luriechildrens.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

Analyzing Autism Support Programs Through Data Science

October 13, 2025

Exploring Alcohol Use and Anxiety Links via Analysis

October 13, 2025

Radioligand Therapy’s Impact on Neuroendocrine Tumors

October 13, 2025

Single-cell Study Links CXCL16/CXCR6 to Psoriasis

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analyzing Autism Support Programs Through Data Science

Enhanced Single-Cell ATAC-seq Data Integration Techniques

Exploring Alcohol Use and Anxiety Links via Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.