• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Protein responsible for Leukemia’s aggressiveness identified

Bioengineer by Bioengineer
April 27, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(Boston)–Researchers have identified a protein critical for the aggressiveness of T-cell leukemia, a subtype of leukemia that afflicts children and adults.

The identification of ubiquitin-fusion degradation 1 (UFD1) allows for better understanding what causes leukemia to progress and become highly aggressive and treatment-resistant, and may lead to a new treatment for this type of cancer.

Leukemia is a blood cancer that affects individuals of all ages. T-cell is a particularly aggressive subtype of leukemia which is fatal in 20 percent of children and 50 percent of adults.

Researchers at Boston University School of Medicine (BUSM) conducted combined analyses of patient samples and experimental models of leukemia that resemble a major subtype of the disease. They found that UFD1 is expressed in this aggressive subtype of leukemia, and reducing its protein levels by approximately 50 percent inhibited leukemia development and progression without impacting the overall health of the experimental models.

"Because of its discouraging odds, and because current treatments remain highly toxic to patients, continued research efforts are needed to understand what causes this disease's aggressiveness and its resistance to treatment, and to identify alternative treatments that are effective but minimally toxic," explained corresponding author Hui Feng, MD, PhD, assistant professor of pharmacology and medicine at BUSM. "This research identifies the potential of targeting UFD1 to treat aggressive leukemia without causing high toxicity to normal tissues."

These findings appear in the journal Leukemia.

###

The research was led by Ms. Leah Huiting, a graduate student in Feng's laboratory, through collaboration of researchers at BU and the University of Massachusetts.

Funding for this study was provided by a grant from the American Cancer Society.

Media Contact

Gina DiGravio
[email protected]
617-638-8480
@BUMedicine

http://www.bmc.org

http://dx.doi.org/10.1038/s41375-018-0141-x

Share12Tweet7Share2ShareShareShare1

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.