• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Burning tumors away

Bioengineer by Bioengineer
April 24, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some 80,000 Americans will be diagnosed with a brain tumor this year according to the American Brain Tumor Association. Many of them will need major surgery and chemotherapy. Sixteen thousand of them will lose the battle. But a team of USC Viterbi School of Engineering researchers are now making it easier, faster and safer for doctors to use an emerging procedure – one that involves burning away tumors in more patients, including those with brain tumors.

Radiofrequency ablation, or RFA, is a minimally invasive procedure that uses electrical energy to destroy cancer cells with heat. A needle-thin probe delivers radio frequency waves directly to the tumor, cooking the tissue up to 140 degrees Fahrenheit, (60 degrees Celsius), until it's destroyed.

No real-time monitoring

"Although ablation is becoming increasingly popular, there is still no thermal imaging technology in regular clinical use to monitor these procedures in real time and ensure that the correct thermal dose is delivered the first time," said research assistant professor John Stang of the Ming Hsieh Department of Electrical Engineering, who co-authored the study published in IEEE Transactions on Biomedical Engineering.

Together with Mahta Moghaddam, director of the Microwave Systems, Sensors, and Imaging Lab, or MiXIL, and holder of the William M. Hogue Professorship in Electrical Engineering at USC, Stang has developed a real time thermal imaging method and device that will help doctors deliver fast, safe and precise thermal ablation treatments for a variety of ailments ranging from tumors to epilepsy.

Surgeons and interventional radiologists rely on the guidance provided by ultrasound, CT, or MRI to perform these life-saving operations. But since there is no real-time monitoring, a follow-up imaging study is needed to confirm proper treatment. This extends time in the operating room, increases risks and costs, Moghaddam explained.

"Without real-time monitoring, there is the potential for both under-treatment and over-treatment," she said. "If there is under-treatment, doctors must perform additional rounds of thermal ablation until all of the tumor is destroyed. Each repeat ablation carries increased risk of infection or other complications and takes up more time in the operating room."

In the case of over-treatment, there is a risk of collateral damage to the surrounding healthy tissue. This can be especially dangerous when the tumor is located close to sensitive structures, near a blood vessel or deep in the skull.

"With our technology, however, we can guide the treatment and focus on a very specific area," Stang said. "A microwave antenna array is placed around the region to be treated, with room left open for the surgeon to insert an ablation probe."

Giving doctors a live temperature map

During the procedure, microwave signals are continuously transmitted and received into the treatment area. From these signals and information from a prior imaging study, like an MRI, Moghaddam and Stang produce a 3D thermal image of the region in real-time, giving doctors a quantitative temperature map of the region they're operating on.

"In in vitro experimental validation studies, our system was able to achieve one-degree Celsius accuracy at a refresh rate of one frame per second," Stang said.

One issue they have to contend with is the resolution of their thermal image is not as high as that of MRI. But Stang sees a world in which this real-time thermal image feed can be overlaid on a high-resolution MRI enabling doctors to precisely deliver the right dose to the right location, without the need for follow-up imaging studies.

For the next phase, their procedure will undergo animal testing later this year, specifically looking at liver cancer with support from the USC Alfred E. Mann Institute for Biomedical Engineering and in collaboration with the USC Keck School of Medicine.

"Assuming we get good results, we may be three to five years away from clinical trials," said Moghaddam who just last year was flying over Alaska taking radar measurements to map climate change in the Arctic from 40,000 feet in air.

"This time, our environment is the human body and we make maps which are smaller. It's a microcosm of the larger terrestrial picture."

###

"Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy" was published in May 2017 online and March 2018 in print.

*Post-doctoral researchers at MiXIL Guanbo Chen and Pratik Shah also made significant contributions to this work.

Media Contact

Amy Blumenthal
[email protected]
917-710-1897
@USC

Looking to the Sky

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025
Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

August 22, 2025

Blocking MondoA–TXNIP Boosts Immunity Against Tumors

August 22, 2025

Lymph Node Subtypes Reveal Colorectal Cancer Insights

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

Signaling Pathways Drive Cisplatin Resistance via SOX2

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.