• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists generate an atlas of the human genome using stem cells

Bioengineer by Bioengineer
April 23, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Azrieli Center for Stem Cells and Genetic Research, Hebrew University of Jerusalem

Scientists from the Hebrew University of Jerusalem have generated an atlas of the human genome using a state-of-the-art gene editing technology and human embryonic stem cells, illuminating the roles that our genes play in health and disease. The scientists have reported their findings in the journal Nature Cell Biology.

Embryonic stem cells are a unique resource as they can turn into any adult cell in our bodies. Their versatile nature puts them at the center of attention in the fields of regenerative medicine, disease modeling and drug discovery. In parallel to the discovery of human embryonic stem cells, another milestone in biology was completed with the sequencing of the human genome, and the identification of the entire set of genes responsible for our genetic identity. This finding has led to a new challenge of understanding the function of the genes in the human genome. Now, the new study by scientists at the Hebrew University provides a novel tool to map the function of all human genes using human embryonic stem cells.

The researchers analyzed virtually all human genes in the human genome by generating more than 180,000 distinct mutations. To produce such a vast array of mutations, they combined a sophisticated gene-editing technology (CRISPR-Cas9 screening) with a new type of embryonic stem cells that was recently isolated by the same research group. This new type of stem cells harbors only a single copy of the human genome, instead of two copies from the mother and father, making gene editing easier thanks to the need of mutating only one copy for each gene (see: 'Scientists generate a new type of human stem cell that has half a genome,' March 17, 2016, https://new.huji.ac.il/en/article/29863).

The researchers show that a mere 9% of all the genes in the human genome are essential for the growth and survival of human embryonic stem cells, whereas 5% of them actually limit the growth of these cells. They could also analyze the role of genes responsible for all hereditary disorders in early human development and growth. Furthermore, they showed how cancer-causing genes could affect the growth of the human embryo.

"This gene atlas enables a new functional view on how we study the human genome and provides a tool that will change the fashion by which we analyze and treat cancer and genetic disorders," said Prof. Nissim Benvenisty, MD, PhD, Director of the Azrieli Center for Stem Cells and Genetic Research and the Herbert Cohn Chair in Cancer Research at the Hebrew University of Jerusalem, and the senior author of the study.

Another key finding of the study was the identification of a small group of genes that are uniquely essential for the survival of human embryonic stem cells but not to other cell types. These genes are thought to maintain the identity of embryonic stem cells and prevent them from becoming cancerous or turning into adult cell types.

"This study creates a new framework for the understanding of what it means to be an embryonic stem cell at the genetic level," said Dr. Atilgan Yilmaz, PhD, postdoctoral fellow and a lead author on the paper. "The more complete a picture we have of the nature of these cells, the better chances we have for successful therapies in the clinic."

###

The paper is titled Defining essential genes for human pluripotent stem cells by CRISPR-Cas9 screening in haploid cells and published in Nature Cell Biology. The research was led by Nissim Benvenisty, MD, PhD, Atilgan Yilmaz, PhD and Motti Peretz, The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem. Additional authors include Aviram Aharony and Ido Sagi also of the Hebrew University. The research was supported by Israel Science Foundation, US-Israel Binational Science Foundation and most generously by the Azrieli Foundation.

Media Contact

Dov Smith
[email protected]
914-265-1265
@HebrewU

http://new.huji.ac.il/en

Related Journal Article

http://dx.doi.org/10.1038/s41556-018-0088-1

Share12Tweet7Share2ShareShareShare1

Related Posts

U-M Study Reveals Medicaid Coverage Boosts Health and Employment Ahead of Work Requirement Debates

October 31, 2025

Structural Racism and Inequities Shaping Cardiovascular Health Disparities Across U.S. Neighborhoods

October 31, 2025

Happiness Outside? Digital Age, Family, and Mind

October 31, 2025

Brain Omics Reveals sn-1 Lysophosphatidylethanolamine’s Role in Alzheimer’s

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reinforcement Learning and Blockchain: Innovative Approaches to Safeguarding the Internet of Medical Things

U-M Study Reveals Medicaid Coverage Boosts Health and Employment Ahead of Work Requirement Debates

Easy Checklist to Discover the Best Methods for Greening Your Space

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.