• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Treatment of cancer could become possible with adenovirus

Bioengineer by Bioengineer
April 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Adenovirus is a common virus that causes infectious diseases of the respiratory tract, eyes and gastrointestinal tract in humans and animals. Researchers at Umeå University study molecular mechanisms of infection in order to understand how adenovirus causes disease.

The researchers in Umeå, together with research groups from Germany, the UK and Hungary, have now discovered a new type of mechanism used by a rare adenovirus type to attack cells.

Human Adenovirus type 52 (HAdV-52) is one of the few adenoviruses that has two different types of fiber proteins on its surface, which are 'used' by the virus for the attachment to target cells. In collaboration with researchers in the Glycosciences Laboratory at Imperial College in London, who are world leading in the research field of glycobiology, the scientists have shown that the shorter fiber binds to an unusual type of carbohydrate-based receptor, polysialic acid (a long chain of repeated sialic acids). Annasara Lenman working with Niklas Arnberg has subsequently corroborated that HAdV-52 binds to polysialic acid on target cells, and that this leads to infection. In collaboration with experts in structural biology at the University of Tübingen, the interaction between the short fiber and polysialic acid has been mapped at the atomic level.

"We knew earlier that the short fiber binds to sialic acid, but not how the underlying carbohydrate chain was constructed," explains Annasara Lenman postdoc at the Department of Clinical Microbiology and The Laboratory for Molecular Infection Medicine Sweden (MIMS) at Umeå University, Sweden.

As polysialic acid is overexpressed on cancer cells in the brain and lungs, our findings could open new possibilities to use HAdV-52 for treatment for the corresponding types of cancer.

For a long time, adenovirus and other viruses have been considered suitable weapons for the treatment of different types of cancer. Viruses can kill cancer cells themselves, but in recent years it has also been understood that a virus infection in a tumor can activate the immune system against the cancer cells. You can also "arm" viruses with different genes that can for example counteract the development of resistance against different drugs. A major challenge has been to target viruses specifically against the cancer cells.

"Most adenoviruses tested so far have only one type of cell-binding fiber. HAdV-52 has two different fibers, one of which has a natural predilection for cancerous cells that express polysialic acid. This opens up a more effective harnessing of viruses against the right kind of cells", Annasara Lenman explains.

The results can also be of importance in other research areas:

"Perhaps the most important function of polysialic acid is its contribution to the brain's development. However, one has not known much about how polysialic acid interacts with its environment. Our research makes it pertinent to investigate whether polysialic acid plays a part in brain development by interacting with specific cellular molecules." says Annasara Lenman.

###

The study, which is now published in PNAS involved experts in glycobiology at Imperial College in London, UK; structural biology, University of Tübingen, Germany; molecular simulation, Biognos, Gothenburg, Sweden; and animal virology, Institute for Veterinary Medical Research, Budapest, Hungary.

Original Publication:

Annasara Lenman, A. Manuel Liaci, Yan Liu, Lars Frängsmyr, Martin Frank, Bärbel S. Blaum, Wengang Chai, Iva I. Podgorski, Balázs Harrach, Mária Benkö, Ten Feizi, Thilo Stehle, and Niklas Arnberg (2018): Polysialic acid is a cellular receptor for human adenovirus 52 PNAS 19 April 2018 (PNAS April 19, 2018. published ahead of print April 19, 2018. https://doi.org/10.1073/pnas.1716900115)

Researchers involved in the study:

* Manuel Liaci, Bärbel S. Blaum, Thilo Stehle University of Tübingen, Germany (Thilo Stehle, Vanderbilt University School of Medicine)

* Yan Liu, Wengang Chai, Ten Feizi, Imperial College London, UK

* Martin Frank, Biognos AB

* Iva I. Podgorski, Balázs Harrach, Mária Benkö, Hungarian Academy of Sciences, Budapest, Hungary (Iva I. Podgorski, Rudjer Boskovic Institute, Zagreb, Croatia)

The studies at Imperial College, Umeå University, and Tubingen were funded by the Wellcome Trust, the Swedish Research Council, and Baden-Württemberg Foundationrespectively

Contact:

Annasara Lenman, postdoctoral fellow, Department of Clinical Microbiology,
The Laboratory for Molecular Infection Medicine Sweden (MIMS)
Umeå University
+46 70 5977743
[email protected]

Niklas Arnberg, professor,
Department of Clinical Microbiology
The Laboratory for Molecular Infection Medicine Sweden (MIMS)
Umeå University
[email protected]
+46 90-785 84 40

http://www.climi.umu.se/english/research/niklas-arnberg–english-/

http://www.mims.umu.se/groups/niklas-arnberg.html

Picture of Annasara Lenman for download, photographer Andreas Lenman https://mediabank.umu.se/detail/Annasara+Lenman/10565

Picture of Niklas Arnberg for download; photographer Mattias Pettersson https://mediabank.umu.se/detail/Niklas+Arnberg/10695

Viruspicture: Mostphotos

Media Contact

Niklas Arnberg
[email protected]
46-907-858-440
@UmeaUniversity

http://www.umu.se/umu/index_eng.html

http://www.mims.umu.se/news-events/1868-treatment-of-cancer-could-become-possible-with-adenovirus.html

Related Journal Article

http://dx.doi.org/10.1073/pnas.1716900115

Share13Tweet7Share2ShareShareShare1

Related Posts

Unveiling Amyloid Fibrils in Atrial Fibrillation

October 29, 2025

Fibroblasts: Unveiling Their Role as Key Drivers in Heart Failure Progression

October 29, 2025

Continental Influence on Nurses’ Musculoskeletal Disorders Prevalence

October 29, 2025

Laser Treatment Triggers Protective Heat Response in Pig Retina

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Statins Boost Cancer Radiotherapy Survival, Study Finds

Unveiling Amyloid Fibrils in Atrial Fibrillation

AI Tool Predicts Critical PDA Risk in Preemies

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.