• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers optimize lung stem cell engineering process

Bioengineer by Bioengineer
April 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Boston – The Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center has engineered two new categories of lung epithelial cells in vitro using pluripotent stem cells. Published in Stem Cell Reports, CReM researchers detailed their use of single cell RNA sequencing, a state-of-the-art technique they employed to generate the most comprehensive profile to date of air sack-like (alveolospheres) and airway-like (bronchospheres) cells derived from pluripotent stem cells. These profiles are new components associated with the Center's Open Source stem cell repository and can be used to create lung tissue in vitro enabling the testing of new drug treatments for a variety of lung diseases.

Diseases affecting the lung, including emphysema, cystic fibrosis, acute respiratory distress syndrome and pulmonary fibrosis, cause considerable morbidity and mortality in the US. However, there are not many treatment options available for those diseases, in part due to the limited availability of human lung cells for research.

Creating human lung epithelial cells in the lab has been a challenge, and lineage-specific reporters, which indicate each cell's specific type, are key to understanding lung epithelial stem cell development. In this study, the researchers used both murine and human pluripotent stem cell lines with airway secretory lineage reporters, which enables their tracking, purification and profiling. Mapping the expression profiles of all genes one cell at a time revealed unexpected heterogeneity in the stem cell-derived lung cells, and the research team at the CReM used this information to improve the airway cells engineered in the lab.

"With our collaborators, we were able to identify factors that we can use to more optimally generate patient-derived lung cells in vitro," said Katie McCauley, PhD, a post-doctoral fellow in the CReM and the study's first author.

CReM's pioneering research using induced pluripotent stem cells (iPSCs), which self-renew indefinitely as undifferentiated cells that become specific adult cell types, has helped create an inexhaustible source of disease- or patient-specific stem cells. Researchers use these cells to construct disease models in a lab and test potential treatments for a variety of diseases affecting the lungs. In 2014, the National Institutes of Health helped to fund the first of its kind lung stem cell repository, which provides researchers open (free) access to the different types of induced pluripotent lung cells to use in their laboratories.

"These findings help us stay true to our mission of Open Source sharing of datasets, cells, and protocols with our colleagues who are dedicated to applying these tools to one day help patients," said senior author Darrell Kotton, MD, the David C. Seldin Professor of Medicine at BU School of Medicine and Director of the CReM of Boston University and Boston Medical Center. "The global research community now has access to this information, which they can use to better understand these newly engineered cells and more quickly develop disease-specific cell line models that can be used to test new therapies and treatments for diseases."

###

This research was done in collaboration with the University of Pennsylvania, Cedars-Sinai Hospital, and Vanderbilt University, and was funded by the National Institutes of Health.

About Boston Medical Center

Boston Medical Center is a private, not-for-profit, 487-bed, academic medical center that is the primary teaching affiliate of Boston University School of Medicine. It is the largest and busiest provider of trauma and emergency services in New England. Boston Medical Center offers specialized care for complex health problems and is a leading research institution, receiving more than $116 million in sponsored research funding in fiscal year 2017. It is the 15th largest recipient of funding in the U.S. from the National Institutes of Health among independent hospitals. In 1997, BMC founded Boston Medical Center Health Plan, Inc., now one of the top ranked Medicaid MCOs in the country, as a non-profit managed care organization. Boston Medical Center and Boston University School of Medicine are partners in the Boston HealthNet – 14 community health centers focused on providing exceptional health care to residents of Boston. For more information, please visit http://www.bmc.org.

About Boston University School of Medicine

Originally established in 1848 as the New England Female Medical College, and incorporated into Boston University in 1873, Boston University School of Medicine (BUSM) today is a leading academic medical center with an enrollment of more than 700 medical students and 950 students pursuing degrees in graduate medical sciences. BUSM faculty contribute to more than 950 active grants and contracts, with total anticipated awards valued at more than $693 million in amyloidosis, arthritis, cardiovascular disease, cancer, infectious diseases, pulmonary disease and dermatology, among other areas. The School's teaching affiliates include Boston Medical Center, its primary teaching hospital, the Boston VA Healthcare System, Kaiser Permanente in northern California, as well as Boston HealthNet, a network of 15 community health centers. For more information, please visit http://www.bumc.bu.edu/busm/

Media Contact

Jenny Eriksen Leary
[email protected]
617-638-6841

http://www.bmc.org

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

August 22, 2025
Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

August 22, 2025

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

NIH Grants Funding to Investigate Socio-Genomic Influences on Local Endometrial Cancer Survival Rates

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.