• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Duel of the inflammatory master regulators: Insights for drug discovery

Bioengineer by Bioengineer
April 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: from Hudson et al Nature Communications 2018

Anti-inflammatory drugs such as dexamethasone can have harmful side effects on the skin, bones and metabolism. Structural biology research from Emory University School of Medicine has implications for the long-standing quest to separate these drugs' benefits from their side effects.

The findings were recently published in Nature Communications (open access).

Dexamethasone is a synthetic glucocorticoid hormone, used to treat conditions such as allergies, asthma, autoimmune diseases and cancer. It mimics the action of the natural hormone cortisol. Both cortisol and synthetic hormones act by binding the glucocorticoid receptor (GR) protein.

GR can bind DNA in two modes. At some sites, it pairs up or "dimerizes" – turning genes on. At others, it binds one at a time, turning genes off. For GR-targeting drugs, the side effects are thought to come from turning on genes involved in processes such as metabolism and bone growth, while the desired anti-inflammatory effects result mainly from turning inflammatory and immune system genes off.

In their new paper, Eric Ortlund, PhD, and colleagues report that GR's ability to directly bind DNA extends more broadly than previously appreciated. The first author is Will Hudson, PhD, previously a graduate student with Ortlund and now a postdoctoral fellow in Rafi Ahmed's lab at Emory Vaccine Center.

GR was known to interfere with another important family of DNA-binding proteins, master regulators of inflammation, which are together called NFkB. Ortlund's team found that GR can directly bind one at a time to many of the same stretches of DNA that NFkB interacts with.

"This type of interaction, where GR is acting one at a time – we think it's druggable," says Ortlund, who is associate professor of biochemistry at Emory University School of Medicine.

He adds that the paper's findings could lead to the reinterpretation of several studies in the field of inflammatory gene regulation. GR was previously proposed to interact with NFkB sites by "tethering," based on protein-protein interactions.

Ortlund notes that mutations that interfere with the ability of GR to dimerize do not affect its ability to turn down inflammation. On the other hand, mutations that disrupt its ability to bind DNA foil both its activating and repressing functions.

The researchers measured the affinity between GR protein and DNA at NFkB-binding sites and showed that it was similar to other hormone-driven interactions GR was well-known for. They also probed the mode of interaction between GR protein and NFkB -binding sites, using both X-ray crystallography and NMR (nuclear magnetic resonance). They showed that GR binds those sites one at a time, in a region that is actually in between the two stretches of DNA contacted by NFkB itself.

Are the same kinds of interactions happening in cells? Hudson, Ortlund and colleagues re-analyzed data from others to show that direct one-at-a time DNA binding by GR could be responsible for repression of many inflammation genes.

###

Collaborators at University of Colorado and Scripps Research Institute, Florida contributed to the paper.

The research was supported by the American Heart Association (13PRE16920012, 14GRNT20460124), the National Institute of General Medical Sciences (F31GM113397, R01GM114420), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK095750, R01DK101871), Howard Hughes Medical Institute (52006923), and the W. M. Keck Foundation.

Media Contact

Quinn Eastman
[email protected]
404-727-7829
@emoryhealthsci

http://whsc.emory.edu/home/news/index.html

Original Source

http://news.emory.edu/stories/2018/04/ortlund_natcomm_duelofinflamm/ http://dx.doi.org/10.1038/s41467-018-03780-1

Share12Tweet7Share2ShareShareShare1

Related Posts

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

August 22, 2025
blank

AI Deciphers Brain Network Differences in Tremors

August 22, 2025

Top Breast Health Advocate Honored with Benjamin Spock Award for Compassion in Medicine

August 22, 2025

Brain Area 46: The Hub of Emotion Regulation in Marmosets

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

Deep Learning Radiomics Advances Tongue Cancer Staging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.