• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Thin, flexible polymers record ‘conversations’ deeper in the brain with less injury-risk

Bioengineer by Bioengineer
April 11, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Science has yet to unravel a complete understanding of the brain and all its intricate workings. It's not for lack of effort.

Over many decades, multiple research studies have sought to understand the dizzying "talk," or interconnectivity, between thousands of microscopic entities in the brain, in particular, neurons. The goal: to one day arrive at a complete brain "mapping" — a feat that could unlock tremendous therapeutic potential.

Researchers at the University of Southern California Viterbi School of Engineering have developed thin, flexible polymer-based materials for use in microelectrode arrays that record activity more deeply in the brain and with more specific placement than ever before. What's more is that each microelectrode array is made up of eight "tines," each with eight microelectrodes which can record from a total 64 subregions of the brain at once.

In addition, the polymer-based material, called Parylene C, is less invasive and damaging to surrounding cells and tissue than previous microelectrode arrays comprised of silicon or microwires. However, the long and thin probes can easily buckle upon insertion, making it necessary to add a self-dissolving brace made up of polyethylene glycol (PEG) that shortens the array and prevents it from bending.

Professor Ellis Meng of the USC Viterbi Department of Biomedical Engineering and Michelson Center for Convergent Bioscience said that the performance of the new polymer-based material is on par with microwires in terms of recording fidelity and sensitivity. "The information that we can get out is equivalent, but the damage is much less," Meng said. "Polymers are gentler on the brain, and because of that, these devices get recordings of neuronal communication over long periods of time."

As with any prosthetic implant, caution must be exercised in terms of the body's natural immune response to a foreign element. In addition to inflammation, previous microelectrode brain implants made of silicon or microwire have caused neuronal death and glial scarring, which is damage to connective tissue in the nervous system. However, Parylene C is biocompatible and can be microfabricated in extremely thin form that molds well to specific sub-regions of the brain, allowing for exploration with minimal tissue displacement and cell damage.

So far, these arrays have been used to record electrophysiological responses of individual neurons within the hippocampus, a subregion of the brain responsible for memory formation. If injured, the hippocampus may be compromised, resulting in a patient's inability to form new memories. Meng said that the polymer-based material can conform to a specific location in the hippocampus and "listen in on a conversation" between neurons and because there are many such "eavesdroppers" (the microelectrodes), much more information about neural interconnectivity can be gleaned.

"I can pick where I want my electrodes to be, so I can match up to the anatomy of the brain," Meng said. "Along the length of a tine, I can put a group of electrodes here and a group of electrodes there, so if we plant to a certain depth, it's going to be near the neurons I want to record from."

Future research will determine the recording lifetime of polymer-based arrays and their long-term "signal-to-noise" (SNR) stability. Also, the team plans to create devices with even higher density, including a double-sided microelectrode array with 64 electrodes per tine instead of eight — making for a total of around 4,000 electrodes placed in the brain at once.

###

In addition to Meng, co-authors include USC faculty members Professor Ted Berger and Research Professor Dong Song; Ph.D. students Huijing Xu and Ahuva Weltman Hirschberg; and post-doctoral scholar Kee Scholten for the study titled "Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings" now published in the Journal of Neural Engineering.

USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm that is now key to cell phone technology and numerous data applications. One of the school's guiding principles is engineering +, a term coined by current Dean Yannis C. Yortsos, to use the power of engineering to address the world's greatest challenges. USC Viterbi is ranked among the top graduate programs in the world and enrolls more than 6,500 undergraduate and graduate students taught by 185 tenured and tenure-track faculty, with 73 endowed chairs and professorships. http://viterbi.usc.edu/

Media Contact

Amy Blumenthal
[email protected]
917-710-1897
@USC

A Colorful Kickoff to AAPI Heritage Month

http://dx.doi.org/10.1088/1741-2552/aa9451

Share12Tweet7Share2ShareShareShare1

Related Posts

CrAAVe-seq reveals key neuronal genes in vivo

CrAAVe-seq reveals key neuronal genes in vivo

August 22, 2025
blank

Blocking Spermine Metabolism Boosts Pancreatic Cancer Immunity

August 22, 2025

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

August 22, 2025

AI Deciphers Brain Network Differences in Tremors

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electrochemical Hybrid Flow Cell Captures CO2 Directly

CrAAVe-seq reveals key neuronal genes in vivo

Blocking Spermine Metabolism Boosts Pancreatic Cancer Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.