• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Personalized tumor vaccine shows promise in pilot trial

Bioengineer by Bioengineer
April 11, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA – A new type of cancer vaccine has yielded promising results in an initial clinical trial conducted at the Perelman School of Medicine at the University of Pennsylvania and the Abramson Cancer Center of the University of Pennsylvania. The personalized vaccine is made from patients' own immune cells, which are exposed in the laboratory to the contents of the patients' tumor cells, and then injected into the patients to initiate a wider immune response. The trial, conducted in advanced ovarian cancer patients, was a pilot trial aimed primarily at determining safety and feasibility, but there were clear signs that it could be effective: About half of the vaccinated patients showed signs of anti-tumor T-cell responses, and those "responders" tended to live much longer without tumor progression than those who didn't respond. One patient, after two years of vaccinations, was disease-free for another five years without further treatment. The study is published today in Science Translational Medicine.

"This vaccine appears to be safe for patients, and elicits a broad anti-tumor immunity–we think it warrants further testing in larger clinical trials," said study lead author Janos L. Tanyi, MD, an assistant professor of obstetrics and gynecology at Penn Medicine.

The study was led by Lana Kandalaft, PharmD, PhD, MTR, George Coukos, MD, PhD, and Alexandre Harari, PhD, of the Lausanne Branch of the Ludwig Institute for Cancer Research. Kandalaft and Coukos devised a novel method for making a vaccine of this sort while at the Perelman School of Medicine at the University of Pennsylvania.

Most cancer vaccines developed to date have been designed to recognize and attack a specific known molecule–such as a cell-surface receptor–that is likely to be found on cancerous cells in any patient with that type of tumor. The approach taken by the Lausanne-Penn team is more ambitious. Each vaccine is essentially personalized for the individual patient, using the patient's own tumor which has a unique set of mutations and thus a unique presentation to the immune system. It is also a whole-tumor vaccine, meant to stimulate an immune response against not just one tumor-associated target but hundreds or thousands.

"The idea is to mobilize an immune response that will target the tumor very broadly, hitting a variety of markers including some that would be found only on that particular tumor," Tanyi said.

The vaccine harnesses the natural process of T-cell immunity to tumors, but enhances it to help overcome tumors' formidable defenses. Tanyi and colleagues made each patient's vaccine by sifting through the patient's own peripheral blood mononuclear cells for suitable precursor cells, and then growing these, in the lab, into a large population of dendritic cells. Dendritic cells are essential for an effective T-cell immune response. They normally ingest infectious pathogens, tumor cells, or anything else considered "foreign," and re-display pieces of the invader to T-cells and other elements of the immune system, to trigger a specific response. The researchers exposed the dendritic cells to specially prepared extracts of the patient's tumor, activated the cells with interferon gamma, and injected them into the patient's lymph nodes, in order to prime a T-cell response.

The team tested this strategy on a total of 25 patients, each of whom received a dose of tumor-exposed dendritic cells every three weeks, in some cases for more than six months. Half of the patients that could be evaluated showed big increases in the numbers of T-cells specifically reactive to tumor material, indicating a good response to vaccination.

"The 2-year overall survival rate of these responder patients was 100 percent, whereas the rate for non-responders was just 25 percent," Tanyi said.

One patient, a 46-year old woman, started the trial with stage 4 ovarian cancer–which generally has a very poor prognosis–following five prior courses of chemotherapy. She received 28 doses of her personalized vaccine over a two-year period, and thereafter remained disease-free for five years.

Also promising was the finding, in tests on several of the responders, of vaccine-induced T-cells that showed high affinity for unique structures ("neoepitopes") on their tumors. In principle, an attack by such T-cells on tumors should be particularly powerful as well as highly tumor-specific and thus sparing of healthy cells.

Tumors typically have a repertoire of molecular defenses they can use to suppress or evade immune attacks, which is why cancer vaccines and immunotherapies have had mixed results in clinical trials to date. Tanyi and colleagues therefore hope in future to enhance the effectiveness of their vaccine by combining it with other drugs that deactivate tumor anti-immune defenses.

###

The senior authors of the study were Alexandre Harari, George Coukos, and Lana E. Kandalaft, all of the Ludwig Institute for Cancer Research at the University of Lausanne. Kandalaft is also an adjunct assistant professor of obstetrics and gynecology at Penn Medicine.

Funding for the study was provided by the National Institutes of Health (P50 CA083638, R21 CA156224, 5P30 CA016520-36), the Marcus Foundation, the Ovarian Cancer Immunotherapy Initiative, the Ludwig Institute for Cancer Research at the University of Lausanne, and the Ovacure Foundation.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center — which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report — Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

Media Contact

Katie Delach
[email protected]
215-349-5964
@PennMedNews

http://www.uphs.upenn.edu/news/

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025
Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.