• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Better diagnosing heart transplant rejection and injury

Bioengineer by Bioengineer
April 10, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The results of an international clinical trial for a new system of diagnosing heart transplant rejection and injury will be presented publicly for the first time at the International Society for Heart & Lung Transplantation (ISHLT) annual meeting, which will take place on April 11 and 12 in Nice, France.

Led by Dr. Phil Halloran and his team at the Alberta Transplant Applied Genomics Centre (ATAGC) at the University of Alberta, Edmonton, Canada, the INTERHEART study developed a molecular system for reading heart transplant biopsies through the use of microarrays, commonly referred to as gene chips. The system promises greater accuracy in determining heart rejection and predicting future heart failure.

"Heart biopsies are conventionally read by microscopes, but there is extensive disagreement between doctors reading the biopsies, and therefore, errors," said Halloran, Muttart Research Chair in Clinical Immunology and a professor of medicine at the U of A. "The ATAGC team believes that biopsies should be read by their molecules, and has developed a 'molecular microscope' method to do just that."

The method uses gene chips–similar in some ways to computer chips–to interpret the molecules in biopsies. In the molecular microscope system developed by the ATAGC, software converts the chip readings into diagnoses automatically.

"Unlike conventional microscopes, the molecular assessment can also detect other serious injuries that are not rejection but can be confused with rejection," said Halloran. "The molecular microscope results suggest that unrecognized injury has been confused with rejection in many cases by conventional methods. This emerges as a major opportunity to improve care."

The molecular system diagnoses rejection of two types: by T cells and by antibodies. Molecular microscope readings require less tissue and ATAGC research indicates that it is more precise and accurate than conventional methods.

The clinical trial was supported by an international team of co-investigators in North America, Europe and Australia. The next step is to use the readings to guide therapy for better outcomes. The molecular microscope system is also being developed for lung transplant, with the goal of changing care for those patients as well.

###

Media Contact

Ross Neitz
[email protected]
780-492-5986
@ualberta_fomd

http://www.med.ualberta.ca

Share12Tweet7Share2ShareShareShare1

Related Posts

Study Reveals Impact of Air Pollution on Children’s Vision

September 23, 2025

Researchers Develop Breakthrough Next-Generation Nanotechnology for Drug Delivery

September 23, 2025

Hydrocortisone’s Impact on Infants with Encephalopathy

September 23, 2025

Neurodevelopment in Preterm Infants: Catheter vs Surgery

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocortisone Dosage and Neurodevelopment in Tiny Infants

Uncovering Hidden Harmonic Dynamics in Generalized Snell’s Law: Unlocking Full-Channel Behavior of Gradient Metasurfaces

FAU Engineers Innovate Advanced AI Solutions to Enhance Control in Complex Systems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.