• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cheaper, less toxic and recyclable light absorbers for hydrogen production

Bioengineer by Bioengineer
April 10, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mimicking photosynthesis in plants, using light to convert stable and abundant molecules like water and CO2 into a high energy fuel (hydrogen) or into chemicals of industrial interest, is a major research challenge today. However, achieving artificial photosynthesis in solution remains limited by the use of costly and toxic metal-based compounds to harvest light. Researchers at CNRS, CEA and the Université Grenoble Alpes propose an efficient alternative using semi-conductor nanocrystals (also called quantum dots) based on cheaper and less toxic elements, such as copper, indium and sulfur. Their work was published in Energy & Environmental Science on 10 April 2018.

In artificial photosynthesis systems chromophores, or "photosensitizers", absorb light energy and transfer electrons to the catalyst, which activates the chemical reaction. Although much progress has been made in recent years in the development of catalysts devoid of noble metals, photosensitizers still rely, in the main, on molecular compounds containing rare and costly metals, such as ruthenium and iridium, or on inorganic semiconductor materials containing cadmium, a toxic metal.

For the first time, researchers at the Département de Chimie Moléculaire (CNRS/Université Grenoble Alpes) and SyMMES (CNRS/CEA/Université Grenoble Alpes)[1] have demonstrated, by joining their expertise in semiconductor engineering and photocatalysis, that it is possible to produce hydrogen very efficiently by combining inorganic semiconductor nanocrystals (quantum dots) formed of a copper and indium sulfide core protected by a zinc sulfide shell, with a cobalt-based molecular catalyst. This "hybrid" system combines the excellent visible light absorption properties and the great stability of inorganic semiconductors with the efficacy of molecular catalysts. In the presence of excess vitamin C, which provides electrons to the system, it shows remarkable catalytic activity in water, the best obtained to date with cadmium-free quantum dots. This system's performance is much higher than that obtained with a ruthenium-based photosensitizer, due to the very high stability of inorganic quantum dots, which can be recycled several times without notable loss of activity.

These results show the high potential of such hybrid systems for hydrogen production using solar energy.

###

[1] Through a collaborative project financed by Labex Arcane in Grenoble.

Media Contact

Alexiane Agullo
[email protected]
33-144-964-390

http://www.cnrs.fr

http://www2.cnrs.fr/en/3099.htm

Related Journal Article

http://dx.doi.org/10.1039/C8EE00120K

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.