• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

HIV Cell dysfunction discovery sheds light on how virus works

Bioengineer by Bioengineer
April 6, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carla Shaffer / AAAS

A team of chemical and biomedical engineers from the Cockrell School of Engineering at The University of Texas at Austin, in collaboration with researchers from the University of Pennsylvania, have discovered that HIV-infected patients experience a dysfunction in a certain type of immune cell: the follicular helper T (Tfh) cell.

In a paper published today in Science Immunology, the authors outline how, through combining a sophisticated sequencing technique with a mass cytometry method (the measurement of cell characteristics), they discovered the Tfh cell dysfunction.

According to the latest figures from the World Health Organization, about 40 million people worldwide are living with HIV/AIDS. In the U.S., about 1 million are living with the virus, and 1 in 7 of those infected don't know it. Overall, the number of recorded cases has been in steady decline — thanks to medical advances and greater public awareness. Still, major information gaps remain in our understanding of the fundamental nature of HIV, making every new insight important.

The UT Austin research team's finding is significant because the Tfh cells — which are present in greater numbers in HIV-infected patients than in healthy individuals– typically help fight off infection by communicating with other immune-supporting cells in the lymph nodes (the immune system's command center) about an impending viral attack. The researchers found that the Tfh cells present in those infected with HIV are not playing their usual part to defend against viral infections.

Led by UT Austin assistant professor Jenny Jiang in the Department of Biomedical Engineering, the research team combined techniques and approaches developed by Jiang and Laura Su, assistant professor of medicine in Penn's Perelman School of Medicine. Together, these technologies allowed the team to comprehensively profile T cells in the lymph node glands of HIV patients.

"These types of cells play a critical role during viral infections of any kind," Jiang said. "They communicate with other immune cells and provide instructions to B cells, for example, to produce virus-neutralizing antibodies that not only kill it off but also help prevent future infections."

Although the CD4+ T cell is notoriously depleted in patients infected with HIV, the population of Tfh cells is actually more elevated in the lymph nodes of those infected with HIV than it is in healthy individuals. This paradox is what makes further analysis of Tfh cell behavior by anyone studying HIV so vital.

Based on their central role in generating protective antibodies, it would be intuitive to assume that the increased presence of Tfh cells should result in greater resistance to infection. However, the researchers found this not to be the case, suggesting that Tfh cells in HIV patients are ineffective at sending signals to B cells to request help to fight off the infection.

"We believe Tfh cells behave differently when fighting chronic infections like HIV versus when fighting off acute infections like the common cold, potentially making them an easy target for HIV," Jiang said. "Our next step is to determine why the Tfh cell dysfunction occurs in HIV-infected patients, moving us one step closer to better understanding the virus."

###

Other investigators include graduate students from UT's Institute for Cellular and Molecular Biology. The team also collaborated with the Instituto Nacional de Enfermedades Respiratorias in Mexico.

The study was supported in part by the UT Austin Cockrell School of Engineering Graduate Fellowship, the Smith Charitable Trust Foundation, the Penn Center for AIDS Research, the Veterans Affairs Merit Award, the National Institute of Allergy and Infectious Diseases, the National Institute on Aging, the National Institutes of Health Shared Instrumentation Grant Program and the Welch Foundation.

Media Contact

Johnny Holden
[email protected]
512-471-2129
@UTAustin

http://www.utexas.edu

Original Source

http://immunology.sciencemag.org/content/3/22/eaan8884

Share14Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.