• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers identify the cells that trigger flowering

Bioengineer by Bioengineer
April 5, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – How do plants "know" it is time to flower? A new study uncovers exactly where a key protein forms before it triggers the flowering process in plants.

Until now, no one has pinpointed which cells produce the small protein, called Flowering Locus T (FT). The study also points to an extensive intercellular signaling system that regulates FT production.

The findings, published in the Proceedings of the National Academy of Sciences, may help breeders, since controlling flowering times is critical for crop development.

"Understanding where FT is located and how it coordinates with other flowering factors is important to breeders; it's useful for breeders for the fine manipulation of flowering times," said Qingguo Chen, the paper's first author and a research associate in the lab of Robert Turgeon, the paper's senior author and professor of plant biology at Cornell University.

Flowering in many plants begins with the perception of day-length, which occurs in the leaves. Some plants flower in short days and others in long days.

It was previously known that in Arabidopsis plants, long day-length starts a process where leaves synthesize and transmit FT in the plant's vascular tissue, called the phloem, which carries sugars and nutrients from leaves to the rest of the plant. FT travels to the shoot apex, the highest point of new leaves and stems, where it promotes the formation of flowers.

Flowering regulation is complex, with the release of FT controlled by more than 30 proteins in interacting cascades. "There's a complicated network and you can't unravel it until you realize what is going on with these particular cells, so the geography is very important," said Turgeon.

Because leaf veins are very small and covered by photosynthetic cells rich in green chlorophyll, identifying the FT-producing cells was difficult. In the study, Turgeon and colleagues used fluorescent proteins to identify the cells in the phloem (veins) where FT was produced.

The researchers discovered that FT was also produced in the same type of companion cells in the phloem of Maryland Mammoth tobacco. Furthermore, when they killed these companion cells, it delayed flowering in both Arabidopisis and the tobacco plants. When they looked more closely at the pathways that lead to flowering, they found that killing these companion cells stopped the process downstream of FT, but not upstream, confirming that FT originates in these cells and that the synthesis of FT is regulated by an extensive intercellular signaling system.

###

The study was funded by the National Science Foundation and Purdue University.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Media Contact

Jeff Tyson
[email protected]
607-793-5769
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2018/03/researchers-identify-cells-trigger-flowering

Related Journal Article

http://dx.doi.org/10.1073/pnas.1719455115

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.