• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

‘Coffee filter’ helps make new cancer drug Z-endoxifen 1000 times cheaper

Bioengineer by Bioengineer
April 5, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Bart van Overbeeke/TU Eindhoven.

Making drugs cheaper doesn't always require pricey investments. A joint initiative by researchers from Eindhoven University of Technology (TU/e), the Dutch company Syncom BV and the Antoni van Leeuwenhoek hospital proves just that. What started out as a Bachelor project at TU/e laid the foundation for a much cheaper production of the promising cancer drug Z-endoxifen.

Tamoxifen is known world-wide as a blockbuster chemotherapeutic drug for the treatment of breast cancer, but it is not always effective. Before it can exert its healing effect, the patient's body must first convert it into the active component Z-endoxifen. Unfortunately, the conversion depends on the patient's genes, which can lead to a variable therapeutic response in patients. By not administering Tamoxifen but Z-endoxifen directly, this genetic dependence is circumvented and the medicine therefore becomes more effective and less toxic due to lower dosing. This has also been demonstrated by clinical trials in the US.

The application of Z-endoxifen had quite a hurdle to overcome: the drug's production was only feasible in small amounts, which led to the exorbitant price of about ten thousand euros per gram. Researchers from TU/e and Syncom have now overcome this hurdle with an improved method to produce Z-endoxifen. During a Bachelor project attentive researchers from TU/e recognized that the HPLC (high-pressure liquid chromatography) purification method used was not at all necessary. Especially on a larger scale HPLC can be particularly expensive.

The existing production method yields two variants (Z- and E-stereo isomers) of endoxifen in a 70:30 ratio, of which the latter is undesired. HPLC was necessary to remove the unwanted 30%. The researchers from Eindhoven made the seredipitous discovery that the ratio one step earlier in the process could be increased to 95:5 in favour of the preferred Z-isomer. At this purity a chemical process known as trituration is possible, which enables removal of the the remaining 5% unwanted E-isomer by paper filter, not unlike filtering coffee granules from your morning coffee. The Dutch company Syncom showed this to be the case, andtook the project to the next level by scaling up the production and rendering the synthesis more robust using a tailored protective group on the molecule. Finally, Prof Jos Beijnen's group in Amsterdam proved that this new approach did indeed produce pure Z-endoxifen and that the alternative method of purification is effective.

For the next phase of clinical trials of Z-endoxifen, it is important that researchers are able to obtain sufficient quantities of the potential drug at a sufficiently low price. The retail price of pure Z-endoxifen is estimated to be approximately 75,000 euros per gram. By comparison, the invention from Eindhoven makes it possible to produce dozens of grams or even kilos of high purity at the same time, a lot easier, and at a cost of production that is 1,000 times lower. The big breakthrough means that if medical research groups want to do research into the effects of the drug, they are no longer dependent on expensive producers, but they can now produce the drug themselves and at a much lower cost.

Former bachelor student Daphne van Scheppingen worked on the synthesis of Z-endoxifen under the supervision of assistant professor Dr Lech-Gustav Milroy, in 2011. The aim of Van Scheppingen's project was to synthesize 30-50 milligrams of Z-endoxifen for a collaboration with the research group of Prof Jos Beijnen of the Antoni van Leeuwenhoek hospital. At that time, the drug was still in pre-clinical development and still had to undergo clinical testing. Van Scheppingen and Milroy made the discovery through careful inspection of the final steps in an already existing synthesis route. These steps include the purification of a mixture of the synthesis products into the pure substance, and involved a much cheaper and simpler alternative purification method. Since the clinical testing had not yet been completed, the scientific interest in Z-endoxifen was still small. Since the the publication of the clinical trial data, the project has received a new impulse and the work has quickly been published. Bartjan Koning and Jan Koek of Syncom have scaled up the synthesis significantly to dozens of grams. This opens the doors to more research into the activity and selectivity of the cancer medication.

In order to make the drug available to patients, the newly discovered production method must be scaled up even further to industrial production (kilograms). The researchers expect that this will require approximately one year of R&D. More research is also needed on the effects of the drug, the so-called Phase II and III, which typically last between 1 and 6 years.

###

Media Contact

Ivo Jongsma
[email protected]
31-402-472-110
@TUEindhoven

http://www.tue.nl/en

Related Journal Article

http://dx.doi.org/10.1016/j.bmcl.2018.03.008

Share12Tweet7Share2ShareShareShare1

Related Posts

Triple Targeting Enhances CXCL16–CXCR6 Antitumor Response

February 9, 2026
Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

February 9, 2026

Exercise’s Impact on SASP Biomarkers in Seniors Unexplored

February 9, 2026

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

February 9, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Private Sector Cuts Greenhouse Gases in Africa’s Livestock

Triple Targeting Enhances CXCL16–CXCR6 Antitumor Response

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.