• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tungsten oxide nanoparticles fight against infection and cancer

Bioengineer by Bioengineer
April 3, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ITEB RAS

Tungsten oxide attracts a great deal of attention on the part of scientists and industrialists due to its vast scope of applications for photo- and electrochromic devices, photosensitive materials and biomedicine. For example, it may be used as an X-ray contrast agent for computer tomography – an essential diagnostic tool for internal organ visualisation. Moreover, tungsten oxide has a strong antibacterial effect based on high photocatalytic activity, which may be further increased by UV irradiation and the use of smaller tungsten particles. Therefore, tungsten oxide is currently used as a visible spectrum photocatalyst for wastewater purification.

Chemists from the Institute of Theoretical and Experimental Biophysics (ITEB RAS), Institute of General and Inorganic Chemistry in Russia with their colleagues from the Ukrainian Institute of Microbiology and Virology obtained nanodisperse tungsten oxide colloid solution. The scientists conducted a complex analysis of particle features and demonstrated their photocatalytic activity through the photodegradation of an indigo carmine pigment. In the presence of tungsten oxide particles, the pigment quickly disintegrated even in the daylight. If additional UV irradiation was applied, this process sped up dramatically even despite low particle concentration.

The team studied how new particles influence various biological objects including both Gram-positive and negative bacteria, Candida fungus and mice cells. Anton Popov, a member of Cell and Tissue Growth Laboratory of ITEB RAS comments on the study: "We analysed tungsten oxide particles cytotoxicity to prokaryotic microorganisms and eukaryotic cells. They show different sensitivity to particle influence, which is apparently related to morphological features of cell membranes and metabolic differences."

During experiments, researchers treated cells with a range of particle concentrations, irradiated cells with UV light and evaluated their condition. In particular, they examined reactive oxygen species level and cell division speed. It turned out that tungsten oxide toxic effect depended on particle dosage and UV irradiation time. Interestingly, low tungsten oxide concentrations were harmless to mice cells while being fatal to bacteria. Presumably it relates to the difference in structure of prokaryotic and eukaryotic cell membranes. However, high tungsten oxide concentrations showed significant toxicity regardless of the cell type.

Another remarkable feature of the new particles is their selective toxicity to cancer cells, which opens the way for a new promising research field. Since particles are selectively toxic to cancer and may serve as an X-ray contrast agent for computer tomography, it is possible to use them for theranostics. This is a new way for designing drugs that act as both diagnostic and treatment agents.

Experimental data suggests even more applications for the new particles. For instance, coatings based on such particles may be useful for providing biosecurity in public places such as hospitals, supermarkets or public transport. Nonetheless, the study also shows that tungsten oxide should be used under strict control so as to avoid toxic influence to humans. The study of synthesis and properties of tungsten oxide nanoparticles was conducted with financial support of The Russian Science Foundation.

###

Media Contact

Tatyana Perevyazova
[email protected]

http://www.akson.science

Original Source

http://web.iteb.psn.ru/press-release/fotohromnye-nanochasticy-oksida-volframa-izbiratelno-toksichny-dlja-kletok-razlichnogo-tipa.htm http://dx.doi.org/10.1016/j.jphotobiol.2017.11.021

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.