• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newton funding to bolster China’s long-term growth and global economy with agri-tech innovation

Bioengineer by Bioengineer
April 4, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: EI

With the largest population in the world, China feeds nearly 1.4 billion people – covering 22% of the globe's inhabitants. In order to keep up with its intense food demand, China has cultivated vast areas of crops – accounting for 7% of the world's arable land.

A remarkable achievement but one that comes at a cost. Excessive use of fertilisers and chemical applications has resulted in a catalogue of environmental and agronomic issues such as soil compaction, acidification, pesticide residue toxicity, pest resistance, environmental pollution, and ecological imbalance. If not confronted promptly, China's agricultural sector and its environment are at imminent risk – damaging its long-term economic growth and potentially the global economy.

To address this monumental challenge, EI and NAU have partnered to improve agricultural practices by developing automated crop analysis based on large aerial images captured by UAVs (unmanned aerial vehicles) and fixed-wing light aircraft to identify key growth stages in wheat.

This aims to enable the Agri-Food sector to optimise the timing for fertiliser and chemical application in line with crop seasons based on agricultural aerial imagery data as well as ground-based remote sensors in the field – reducing costs and stabilising yields. The agri-solution will be built upon the existing analytic platform 'AirSurf' and expertise in machine-learning based image analysis, led by the Zhou Group at EI, together with key intellectual contributions from NAU.

EI project lead, Dr Ji Zhou, said: "Our innovative analytic technology will help resolve real-world problems in food security and precision agriculture; initially benefiting local agricultural authorities in the Jiangsu province through local agronomic demonstration centres and cultivation experts, and native farmers. Through the 'Field Day of Precision Crop Cultivation', we will demonstrate our research to agricultural practitioners (e.g. growers, farmers and breeders), who require advanced technologies to monitor crop fields and gain a better understanding of fertiliser and chemical applications.

"This project will also benefit and help modernise Agri-Crop and Agri-Tech sectors in both China and the UK. In particular, for Agri-Food Research & Development in China, our work can support the establishment of a smart, sustainable and adaptable agricultural system – empowering the country's productivity and sustainability in crop improvement and agricultural practices," said Dr Zhou.

Long-term, the project will apply AirSurf to industrial applications to further support the Agri-Food sector; sharing invaluable expertise, knowledge and software analytic platforms in key areas of crop research including phenotyping, breeding, cultivation, agricultural practices, and Agri-Tech innovation for bread wheat.

NAU project lead Prof Tao Cheng, added: "Through this Newton Network+ project in collaboration with Dr Zhou at the Earlham Institute, the two research groups will continuously develop our strengths in precision agriculture and information technologies. We aim to introduce the latest development in computing sciences to crop growth monitoring research, based on which we will create novel approaches to reliably measure key growth stages and predict yield production for wheat. Our ultimate target is to promote Agri-Tech innovations and modernise agriculture in both China and the UK".

###

Media Contact

Hayley London
[email protected]
160-345-0107

http://www.earlham.ac.uk/

Original Source

http://www.earlham.ac.uk/newsroom/newton-funding-bolster-china%E2%80%99s-long-term-growth-and-global-economy-agri-tech-innovation

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.