• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Using ultrasound to help people walk again

Bioengineer by Bioengineer
April 3, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sharma Lab/University of Pittsburgh

PITTSBURGH (April 3, 2017) … Spinal cord injuries impact more than 17,000 Americans each year, and although those with incomplete injuries may regain control of their limbs, overall muscle strength and mobility is weakened. Neurorehabilitation using robotic exoskeletons or electrical stimulation devices can help a person regain movement through repeated exercise. The amount of assistance through these devices during neurorehabilitation is based on the measurement of the user's remaining muscle function.

However, current sensing techniques are often unable to correctly measure voluntary muscle function in these individuals. Any discrepancies in the measurement can cause the robot to provide inadequate assistance or over-assistance. Improper robotic assistance slows recovery from the injury, and can potentially lead to falls during robot-assisted walking. To reduce this risk and provide therapists and patients with a more efficient rehabilitation tool, a researcher at the University of Pittsburgh's Swanson School of Engineering is utilizing ultrasound imaging to develop a more precise interface between exoskeletons and individual muscles.

Nitin Sharma, assistant professor of mechanical engineering and materials science, received a $509,060 CAREER award from the National Science Foundation for "Ultrasound-based Intent Modeling and Control Framework for Neurorehabilitation and Educating Children with Disabilities and High School Students." The NSF CAREER award is the organization's most competitive research prize for junior faculty.

Current noninvasive rehabilitation devices measure electrical signals from muscle activity, also known as electromyography to predict remaining muscle function and subsequent assistance. However, Dr. Sharma explained that correctly measuring how much assistance the device should provide is a challenge with electromyography, and also its use is limited to large muscle groups.

Dr. Sharma says, "In very complex muscle groups that provide a range of motions, we need to measure individual muscle activity, rather than measuring the entire muscle group at once via electromyography, because it is susceptible to interference from adjacent muscles. Ultrasound can reduce the interference from surrounding muscle groups so that we can collect, monitor and control muscle activity of individual muscle fibers."

Dr. Sharma's lab group will specifically focus on the human ankle for both its range of complex movements and its role in providing stability and balance when walking or standing. Ultrasound will provide precise imaging of the ankle muscles responsible for specific movements, which in turn will allow for optimization of electrode placement and correct modulation of robotic assistance to initiate movement.

Ultimately, Dr. Sharma intends to build an ankle exoskeleton that patients and therapists can use in clinical rehabilitation.

"Rather than randomly stimulating the entire ankle area to create movement in one direction, a wearable ultrasound-based exoskeleton can better monitor and control movement so that persons with incomplete spinal cord injury can more safely and quickly walk on the road to recovery," Dr. Sharma said. "The technology also has the potential to help patients with other walking disorders better control their gait and balance."

###

Media Contact

Paul Kovach
[email protected]
412-624-0265

http://www.pitt.edu

Original Source

http://www.engineering.pitt.edu/News/2018/Nitin-Sharma-NSF-Career-Award/

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.