• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Potential of manipulating gut microbiome to boost efficacy of cancer immunotherapies

Bioengineer by Bioengineer
April 2, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA -The composition of bacteria in the gastrointestinal tract may hold clues to help predict which cancer patients are most apt to benefit from the personalized cellular therapies that have shown unprecedented promise in the fight against hard-to-treat cancers, according to new research from the Perelman School of Medicine at the University of Pennsylvania.

Reporting in the Journal of Clinical Investigation Insights, a team led by senior author Andrea Facciabene, PhD, a research assistant professor of Radiation Oncology and Obstetrics/Gynecology, found that the effectiveness of adoptive T cell therapy (ACT) in mice with cancer is significantly affected by differences in the natural makeup of gut bacteria and treatment with antibiotics. The team also found that the use of fecal transplants – which are increasingly used for treating recurrent C. difficile colitis – affected the efficacy of ACT between different strains of lab rodents. ACT enlists a patient's own immune system to fight diseases, such as cancer and certain infections. T cells are collected from a patient and grown in the lab to increase the number of tumor-killing T cells. . The pumped-up cells are then given back to the patient as reinforcements to the body's natural anti-tumor immune response.

Experiments performed by coauthor Mireia Uribe-Herranz, PhD, a research associate in Facciabene's lab, demonstrate that when ACT was performed on genetically identical animals obtained from different vendors (Jackson Laboratory or Harlan Laboratories), which carry different microbiota, impact of the therapy was not identical. Animals obtained from Harlan showed a much stronger anti-tumor effect compared to animals from Jackson.

Depletion of gram-positive bacteria within the gut, using an antibiotic called vancomycin, also increased the efficacy of the therapy, improving the anti-tumor response and overall remission rate in less-responsive mice. The beneficial responses were associated with an increase in systemic dendritic cells, which in turn increased the expression of interleukin 12 (IL-12), which sustained expansion and anti-tumor effects of transferred T cells.

To define a relationship between gut bacteria and the efficacy of ACT, the researchers transplanted fecal microbiota from Jackson mice to Harlan mice. They found that Harlan mice transplanted with Jackson microbiota copied the anti-tumor response and tumor growth of Jackson mice.

"This means that the microbiota-dependent response to ACT was successfully transferred between mice, and that modulation with specific antibiotics can be used to increase ACT efficacy," Facciabene said, confirming that this technique could be applied to control gut microbiome populations and improve ACT. Collectively, the findings demonstrate an important role played by the gut microbiota in the antitumor effectiveness of ACT.

###

This research was supported by Be the Difference Foundation, Teal Tea Foundation, and the Pennsylvania Department of Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center — which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report — Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

Media Contact

Karen Kreeger
[email protected]
215-459-0544
@PennMedNews

http://www.uphs.upenn.edu/news/

Share14Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.