• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTA bioengineer earns AHA grant to study biomechanical influences on ventricular growth

Bioengineer by Bioengineer
March 30, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UT Arlington

A University of Texas at Arlington researcher is working to determine how blood flow and cardiac muscle contraction affects gene development that leads to ventricular chamber development in the heart.

Juhyun Lee, an assistant professor in the Bioengineering Department, is using a two-year, $154,000 Institutional Research Grant from the American Heart Association to develop a new microscope that can capture 3-D motion, then add time to construct a 4-D beating heart using optical imaging techniques with fluorescent nanoparticles in a zebrafish. Victoria Messerschmidt and Zach Bailey, two doctoral students, and Richard Bryant, who is seeking his master's degree, are helping Lee on the project.

"We are trying to understand biological forces through engineering," Lee said. "This research is still in its basic stages, but what we learn now could someday allow doctors to pre-identify heart abnormalities and diagnose congenital heart conditions that could then be treated with gene therapy."

Lee must build his microscope because none are commercially available that can capture 3-D motion plus time. Once it is built, he will inject the zebrafish with nanoparticles that attach where certain genes are expressed and track how genes affect ventricular development. He is using zebrafish because their bodies are transparent in the embryonic stage, so it is easy to see the nanoparticles without the use of magnetic resonance imaging.

Lee will use his new microscope to create a 4-D model of a beating heart based on the images and genetic information collected from the fish, then apply computation models to that data to test his findings.

This will include modifying the genes and using them to modulate contraction and hemodynamics or blood flow to see how changes in biomechanical forces affect gene development and then chamber development. In response to hemodynamic forces, ridges and grooves form in a wavelike pattern called a trabecular network in the direction of the blood flow. Too much or too little trabeculation can lead to defects with high mortality rates.

"If we can understand the effects of biomechanical forces on the genes that cause ventricular chamber development, we can discern the optimized shape of the ventricle and best contraction rate. From there, it could be possible to change the levels of gene expressions," Lee said.

Lee's work is the latest example of UTA's research in cardiac health in support of health and the human condition, a key tenet of the University's Strategic Plan 2020: Bold Solutions | Global Impact, said Michael Cho, professor and Alfred R. and Janet H. Potvin Endowed Chair of the Bioengineering Department.

"Even in its early stages, Dr. Lee's work is exciting in its potential for making large strides in correcting cardiac defects in the future," Cho said. "This research will offer critical insight into how the heart forms and the biomechanical factors that affect cardiac growth, and that knowledge will allow better research into potentially life-saving techniques down the road."

Other recent examples of UTA research in cardiac health include:

    * Michael Nelson, assistant professor of kinesiology, is using a $3.3 million grant from the National Institutes of Health to study the link between fat storage in the heart and cardiovascular disease, as well as the influence of gender on the development of cardiac dysfunction.

    * Bioengineering Professor Kytai Nguyen earned a National Institutes of Health T-32 grant totaling more than $1 million over five years to recruit and train outstanding doctoral students in nanotechnology and nanomedicine related to cardiovascular and pulmonary issues.

    * Mark Haykowsky, a cardiovascular exercise scientist in the College of Nursing and Health Innovation, received a $308,000 grant from the National Institutes of Health to study exercise intolerance in older heart failure patients with preserved ejection fraction, or HFpEF.

    * Yi Hong, an assistant professor in the Bioengineering Department, was awarded a $211,000 R21 grant from the National Institutes of Health to develop materials that will allow doctors to use a 3-D printer to create unique new blood vessels for children with vascular defects.

###

Media Contact

Herb Booth
[email protected]
817-272-7075
@utarlington

http://www.uta.edu

Original Source

https://www.uta.edu/news/releases/2018/03/Juhyun-AHA-grant.php

Share16Tweet8Share2ShareShareShare2

Related Posts

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

August 24, 2025
New Inhibitor Targets Glioma Progression Effectively

New Inhibitor Targets Glioma Progression Effectively

August 24, 2025

Real-World Study: Efficacy of Loxenatide Plus Insulin

August 24, 2025

Link Between hs-CRP/HDL-C Ratio and Diabetes Risk

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    120 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seedling Success in Oromia’s Forest Restoration Efforts

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Breast Cancer Recurrence: Insights from Addis Ababa Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.