• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tumor suppressor protein targets liver cancer

Bioengineer by Bioengineer
March 29, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA–(March 29, 2018) Salk Institute scientists, together with researchers from Switzerland's University of Basel and University Hospital Basel, discovered a protein called LHPP that acts as a molecular switch to turn off the uncontrolled growth of cells in liver cancer. The tumor suppressor, which could be useful as a biomarker to help diagnose and monitor treatment for liver cancer, could also be relevant for other cancer types. The work appeared in print in the journal Nature on March 29, 2018, and adds to the growing body of knowledge about cellular processes that either promote or prevent cancer.

"I think we've discovered a new control mechanism for cell proteins that, when disrupted, could be a driver for cancer," says Tony Hunter, Salk's American Cancer Society Professor and an author on the new paper. "It's exciting because it offers the possibility of new therapeutics or new diagnostics for a cancer that's basically untreatable–liver cancer–and potentially others, as well."

Hunter is known for his 1979 discovery of a molecular signaling process called tyrosine phosphorylation. In this process, proteins called kinases attach the chemical phosphate–like a sticky note–to the amino acid tyrosine in target proteins. But, when dysfunctional, tyrosine phosphorylation can also turn on the uncontrolled cell growth that leads to cancer. Hunter's breakthrough opened the door to the development of a new class of anti-cancer pharmaceuticals called tyrosine kinase inhibitors, including the life-saving leukemia drug Gleevec.

Since then, Hunter's lab has continued to study the process of phosphorylation, not only in terms of adding phosphates (via kinases or "on switches") but also removing them (via proteins called phosphatases or "off switches"). In 2015, his team developed an antibody to identify and study phosphates bonded to another amino acid called histidine.

In the new work, the international team, led by Professor Michael Hall of the Biozentrum, University of Basel, examined these switches in a mouse model of the most common form of primary liver cancer–hepatocellular carcinoma. To compare tumor cells with normal cells, the team analyzed more than 4,000 proteins in healthy and diseased liver tissue. By the end, three proteins stood out: the histidine kinases NME1 and NME2 were elevated in tumor cells, and the suspected histidine phosphatase LHPP was deficient.

"It is striking that LHPP is present in healthy tissue and completely absent in tumor tissue," says Sravanth Hindupur, a postdoctoral researcher at the University of Basel and the paper's first author. That gave the researchers a clue to explore histidine phosphorylation as a potential cancer target. Indeed, they found that the levels of protein phosphorylated in histidine were significantly higher in the tumor tissue than in normal liver tissue.

NME1 and NME2 are known histidine kinases and LHPP had been suspected to be a histidine phosphatase. With further experiments, the team verified that not only is LHPP a histidine phosphatase, but it is also a tumor suppressor–essentially an "off" switch for cancer. Reintroducing LHPP into the liver of the model mice destined to develop tumors prevented the formation of tumors.

When the researchers next examined samples from human liver tumors, they found a similar pattern: NME1 and 2 levels were high and LHPP was low compared to healthy liver tissue. Furthermore, the Cancer Genome Atlas database, a collection of RNA sequences obtained from different human cancers, showed that a significant fraction of human liver cancers have low levels of LHPP, and that both disease severity and life expectancy are correlated with LHPP levels.

"The parallels between tyrosine phosphorylation and histidine phosphorylation are what really got me interested in the project," adds Hunter. "Whether this can be used as a therapeutic avenue, I don't know. But the fact that it could be so disease-relevant motivates me."

###

Other authors included: Marco Colombi, Yakir Guri, Marion Cornu, Charles Betz, Suzette Moses and Paul Jenoe of the University of Basel; Stephen R. Fuhs, formerly of Salk and Kevin Adam of Salk; and Mathias S. Matter, Salvatore Piscuoglu, Charlotte K. Y. Ng, Luca Quagliata, Luigi M. Terracciano, and Markus H. Heim of University Hospital Basel.

The work was funded by the Swiss National Foundation, the US Public Health Service, the Louis Jeantet Foundation, SystemsX.ch and the European Research Council.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
[email protected]
858-453-4100
@salkinstitute

Salk Institute for Biological Studies

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.