• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMN Medical School study uncovers new findings on antimicrobial drug synergy

Bioengineer by Bioengineer
March 27, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MINNEAPOLIS – March 27, 2018 – New data from a study led by researchers from the University of Minnesota Medical School could change how future antimicrobial drug combinations are discovered and developed.

Trimethoprim-sulfamethoxazole is a highly synergistic antimicrobial drug combination that is widely used to treat a variety of bacterial and fungal infections. These drugs are known to act by targeting specific steps in the folate biosynthetic pathway, and their combined activity is far greater than the sum of their individual activities. For the last fifty years it has been presumed that the basis for their synergistic antimicrobial activity was fairly simple–essentially, that the drugs work together by inhibiting sequential steps in a linear biosynthetic pathway.

A new study from Yusuke Minato, PhD, and Anthony D. Baughn, PhD, from the Department of Microbiology and Immunology at the University of Minnesota Medical School, demonstrates that there is an unrecognized cyclic pathway structure within the folate biosynthesis pathway, the target of these drugs, that allows each drug to enhance the activity of the other.

"We now understand how these two antibiotics work together. An overlooked loop structure of the folate biosynthetic pathway is crucial to produce synergistic activity of these two antibiotics," said Minato.

This discovery, recently published as a paper, "Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole" in Nature Communications, has the potential to open new doors for identification of other synergistic drug combinations.

"It tells us the way we can look for other drug combinations that will have similar synergistic activity," said Baughn. "There is a major problem with drug resistance and lack of effective drugs, not just for Escherichia coli where our work was focused, but for pretty much all infectious diseases."

Drs. Baughn and Minato hope that the understanding of mechanisms for synergy will lead them and others to more potent drug combinations that can be deployed in the fight against pathogenic microbes as drug resistance becomes increasingly commonplace.

###

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Contact: Krystle Barbour
[email protected]
612-626-2767

Media Contact

Krystle Barbour
[email protected]
612-626-2767
@umnmedschool

https://www.med.umn.edu/

http://dx.doi.org/10.1038/s41467-018-03447-x

Share12Tweet7Share2ShareShareShare1

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.