• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Repurposing inhibitors may provide new treatment approach for ovarian cancer

Bioengineer by Bioengineer
March 27, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA — (March 27, 2018) — Wistar researchers have found rationale for repurposing a class of antitumor compounds called HDAC inhibitors, already approved by the FDA for the treatment of diseases such as leukemia, as a new therapeutic option for ovarian cancer with mutations in the ARID1A gene. Study results were published online in Cell Reports.

Ovarian cancer is the most lethal gynecological malignancy and the clear cell subtype is particularly notorious for not responding well to conventional chemotherapy, leaving limited treatment options for these patients. The ARID1A gene is mutated in more than 50 percent of cases of ovarian clear cell carcinoma. In normal cells, ARID1A regulates expression of a set of genes by affecting the structure of chromatin – the complex of DNA and proteins in which DNA is packaged in our cells. ARID1A mutations cause loss of the protein or its function, which results in malignant transformation of the cells.

In this study, lead researcher Rugang Zhang, Ph.D., and colleagues showed that ARID1A-mutant ovarian cancers are selectively sensitive to inhibition of another chromatin remodeling enzyme called HDAC2. This finding is consistent with the fact that high HDAC2 expression is known to be associated with poor outcome in this type of cancer.

"HDAC2 and associated enzymes are well established therapeutic targets and a number of HDAC inhibitors have received FDA approval for the treatment of hematopoietic malignancies," said Zhang, deputy director of The Wistar Institute Cancer Center, and professor and co-program leader of the Gene Expression and Regulation Program. "We suggest that these inhibitors might be repurposed to target ARID1A-mutant ovarian cancers."

The Zhang Lab showed that HDAC2 inhibition suppresses proliferation and induces programmed cell death in cells with inactivated ARID1A by promoting expression of the PIK3IP1 gene. PIK3IP1 is a tumor suppressive protein that functions as an inhibitor of an important signaling axis that promotes cells proliferation and survival. Through gene knockdown approaches and genomics experiments, the researchers established that, in the absence of ARID1A, HDAC2 binds to the regulatory elements of the PIK3IP1 gene and represses its expression. As a result, the loss of PIK3IP1 allows the tumor to grow and spread while treatment with HDAC2 inhibitors restores PIK3IP1 expression and blocks tumor progression.

The team explored the use of an FDA-approved HDAC inhibitor and confirmed the therapeutic potential of this treatment in mouse models of ARID1A-inactivated ovarian cancer. According to their observations, this inhibitor slowed tumor growth and abnormal buildup of fluids in the abdomen of the tumor-bearing mice and improved survival.

"We have previously reported on the role of another chromatin remodeling factor, called EZH2, in ARID1A-mutant ovarian cancer with a similar mechanism involving antagonistic regulation of PIK3IP1 expression," said Takeshi Fukumoto, Ph.D., first author of the study and a postdoctoral researcher in the Zhang Lab. "However, it might be advantageous to inhibit EZH2 and HDAC2 simultaneously to keep at bay the development of resistance to either inhibitor alone."

Given that mutations and loss of expression of ARID1A are significantly present in multiple human cancers, the new findings may have broader implications for treatment of a wider array of malignancies.

###

This work was supported by National Institutes of Health (NIH) grants R01CA160331, R01CA163377, R01CA202919, and K99CA194318, and U.S. Department of Defense grants OC140632P1 and OC150446 to R. Z. Additional support was provided by an Ovarian Cancer Research Fund Alliance (OCRFA) program project. Core support for The Wistar Institute was provided by the Cancer Center Support Grant P30 CA010815.

Co-authors from Wistar include Pyoung Hwa Park, Shuai Wu, Nail Fatkhutdinov, Sergey Karakashev, Timothy Nacarelli, Andrew V. Kossenkov, David W. Speicher, and Benjamin G. Bitler. Other co-authors include Stephanie Jean from the Helen F. Graham Cancer Center & Research Institute; Lin Zhang from the University of Pennsylvania; Tian-Li Wang and Ie-Ming Shih from Johns Hopkins Medical Institutions; and Jose R. Conejo-Garcia from Moffitt Cancer Center.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact

Darien Sutton
[email protected]
215-898-3988
@TheWistar

Home

https://wistar.org/news/press-releases/repurposing-existing-fda-approved-inhibitors-may-provide-new-treatment-approach

Share12Tweet7Share2ShareShareShare1

Related Posts

Mapping Splicing Events in Cows’ β-Casein Genotypes

Mapping Splicing Events in Cows’ β-Casein Genotypes

November 17, 2025
blank

Microchimerism: Challenging Conventional Views on Sex and Gender

November 17, 2025

Bifidobacterium animalis QC08 Boosts Immunity in Mice

November 17, 2025

Edible Insects: Balancing Microbes and Health Benefits

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    117 shares
    Share 47 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dietary Indices, Visceral Fat, and Childhood Asthma

Survey Reveals Key Diabetes Audit Factors for Hospitals

Endodontic Treatment Boosts Metabolism, Study Reveals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.