• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The brain learns completely differently than we’ve assumed since the 20th century

Bioengineer by Bioengineer
March 23, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Prof. Ido Kanter

The brain is a complex network containing billions of neurons, where each of these neurons communicates simultaneously with thousands of other via their synapses (links). However, the neuron actually collects its many synaptic incoming signals through several extremely long ramified "arms" only, called dendritic trees.

In 1949 Donald Hebb's pioneering work suggested that learning occurs in the brain by modifying the strength of the synapses, whereas neurons function as the computational elements in the brain. This has remained the common assumption until today.

Using new theoretical results and experiments on neuronal cultures, a group of scientists, led by Prof. Ido Kanter, of the Department of Physics and the Gonda (Goldschmied) Multidisciplinary Brain Research Center at Bar-Ilan University, has demonstrated that the central assumption for nearly 70 years that learning occurs only in the synapses is mistaken.

In an article published today in the journal Scientific Reports, the researchers go against conventional wisdom to show that learning is actually done by several dendrites, similar to the slow learning mechanism currently attributed to the synapses.

"The newly discovered process of learning in the dendrites occurs at a much faster rate than in the old scenario suggesting that learning occurs solely in the synapses. In this new dendritic learning process, there are a few adaptive parameters per neuron, in comparison to thousands of tiny and sensitive ones in the synaptic learning scenario," said Prof. Kanter, whose research team includes Shira Sardi, Roni Vardi, Anton Sheinin, Amir Goldental and Herut Uzan.

The newly suggested learning scenario indicates that learning occurs in a few dendrites that are in much closer proximity to the neuron, as opposed to the previous notion. "Does it make sense to measure the quality of air we breathe via many tiny, distant satellite sensors at the elevation of a skyscraper, or by using one or several sensors in close proximity to the nose? Similarly, it is more efficient for the neuron to estimate its incoming signals close to its computational unit, the neuron," says Kanter. Hebb's theory has been so deeply rooted in the scientific world for 70 years that no one has ever proposed such a different approach. Moreover, synapses and dendrites are connected to the neuron in a series, so the exact localized site of the learning process seemed irrelevant.

Another important finding of the study is that weak synapses, previously assumed to be insignificant even though they comprise the majority of our brain, play an important role in the dynamics of our brain. They induce oscillations of the learning parameters rather than pushing them to unrealistic fixed extremes, as suggested in the current synaptic learning scenario.

The new learning scenario occurs in different sites of the brain and therefore calls for a reevaluation of current treatments for disordered brain functionality. Hence, the popular phrase "neurons that fire together wire together", summarizing Donald Hebb's 70-year-old hypothesis, must now be rephrased. In addition, the learning mechanism is at the basis of recent advanced machine learning and deep learning achievements. The change in the learning paradigm opens new horizons for different types of deep learning algorithms and artificial intelligence based applications imitating our brain functions, but with advanced features and at a much faster speed.

###

On publication, the paper will be available online at www.nature.com/articles/s41598-018-23471-7.

Media Contact

Elana Oberlander
[email protected]
@ubarilan

http://www.biu.ac.il

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-23471-7

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

How Behavior Shapes Morphological Evolution in Primates

August 1, 2025
Experts Urge Stronger Governance for Climate Interventions to Protect Our Oceans

Experts Urge Stronger Governance for Climate Interventions to Protect Our Oceans

August 1, 2025

Cutting-Edge AI Reveals Hidden “Dark Side” of the Human Genome

August 1, 2025

Innovative mRNA Therapy Demonstrates Potential for Heart Regeneration Post-Heart Attack

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds Nearly 70% of U.S. Children in Fatal Car Crashes Were Improperly Restrained

How Behavior Shapes Morphological Evolution in Primates

Normothermic Machine Perfusion in Kidney Transplants: Pros & Cons

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.