• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An eco-friendly alternative to recycling e-waste

Bioengineer by Bioengineer
March 14, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As consumers toss aside old cell phones, tablets and laptops to keep up with the latest technology, landfills are becoming full of the old devices. To address this buildup, scientists are attempting to recover valuable plastics from this electronic waste, or "e-waste." Now, one group reports in ACS Sustainable Chemistry & Engineering that they have found an eco-friendly alternative to current methods.

In 2009, U.S. consumers discarded 2.37 million tons of e-waste, according to the U.S. Environmental Protection Agency. This type of refuse is a broad category that includes everything from phones and video game consoles to refrigerators and televisions. These devices contain valuable plastics, such as polycarbonates. In an effort to reduce the amount of e-waste accumulating in landfills and recover the valuable polymers, researchers have explored different extraction methods. Current approaches can include the use of chlorinated substances, such as dichloromethane (DCM), that are toxic, pricey and volatile. Sriraam R. Chandrasekaran, Brajendra K. Sharma and colleagues wanted to explore an alternative solvent called N-methyl-2-pyrrolidone (NMP) that would be more friendly to the user and the environment.

Cell phone plastics typically contain a mixture of polycarbonate and polyamide. In large-scale experiments, the researchers found that DCM and NMP recovered 87 percent and 89 percent of the polycarbonate from cell phone plastic, respectively, and the NMP could be reused at least one more time without losing efficiency. But some e-waste contains more complex mixtures that would require multiple solvents and a lot of energy to recycle. In that case, the team suggests that pyrolysis, or heating the material to high temperatures, would be a better alternative. They showed that the amount of a mixture of four e-waste plastics was reduced by about 40 percent with pyrolysis.

###

The authors acknowledge funding from HOBI International, Inc. and the Hazardous Waste Research Funds of Illinois Sustainable Technology Center.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet7Share2ShareShareShare1

Related Posts

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

August 26, 2025
Brain and Gill Kynurenine Pathway Regulation in Shrimp

Brain and Gill Kynurenine Pathway Regulation in Shrimp

August 26, 2025

Resistant Starch Boosts Gut Health in Ready Meals

August 26, 2025

Post-Disbudding Pain Alters Calves’ Play Behavior

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unseen Whirlwinds: Researchers Discover ‘Hidden’ Vortices That May Impact Soil and Snow Movement

Higher Skin Autofluorescence Signals Cancer Risk

Spatial Cues Drive Multiplexed Theta Coding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.