• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cells stressed out? Make mitochondria longer

Bioengineer by Bioengineer
March 14, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA – March 14, 2018 – Scientists at The Scripps Research Institute (TSRI) have discovered a new pathway in cells that promotes mitochondrial function during times of stress, a response that can guard against disease as we age.

In response to stress, rather than churn out misshapen proteins, our cells activate protective pathways that take an even more dramatic response–shutting down protein production entirely. Researchers show that along with this shutdown comes an odd change in shape of organelles called mitochondria, which are responsible for generating cellular energy. Instead of looking like tiny lima beans, mitochondria start to stretch out like noodles.

"Just a couple hours of not making proteins seems to be enough to remodel the mitochondria, and they can stay that way for hours," says Luke Wiseman, PhD, associate professor at TSRI and senior author of the new study, published this week in the journal Cell Reports. "That seems to be a protective way to promote mitochondrial function during the early stages of stress."

The new study offers a closer look at a stress-response pathway in cells called the Unfolded Protein Response (UPR). The UPR has several "branches" that regulate different cellular functions. The Wiseman lab focuses on how stress in a compartment of cells called the endoplasmic reticulum (ER) affects mitochondrial shape and function.

An important player in this response is a sensor/initiator of the UPR called PERK. Wiseman describes the PERK branch as a finely tuned signaling pathway. Without enough PERK signaling, the mitochondria can go haywire in times of stress and significantly challenge cellular function. But if this pathway is hyperactivated, the cell self-destructs.

As we age however, it becomes difficult for the system to maintain this balance. "When you're older, little problems can become bigger problems because the PERK pathway isn't as good at responding," Wiseman says.

Previous research shows that in times of stress, PERK has an important role in regulating many aspects of mitochondrial function including preventing the mitochondrial accumulation of misshapen proteins in response to ER stress. This new study shows that shutting down protein production through activation of PERK also influences mitochondrial shape by increasing its length. Changes in mitochondrial shape are known to influence mitochondrial function, indicating that this is a mechanism to adapt mitochondrial function during ER stress.

The next question for the team was whether this shutdown and remodeling was helping or hurting cells. The mitochondria's main role is to produce energy for the cell, so the researchers measured energy output to see how well mitochondria were functioning after cells experienced ER stress.

They found that shutting down protein production and remodeling the mitochondria did make a difference. "We were able to able to show a protective effect, where mitochondrial energy production was protected due to increased mitochondrial length" says Justine Lebeau, PhD, research associate at TSRI and co-first author of the study.

The researchers suspect that this whole system evolved to give cells a way to respond to stress very quickly, when they just don't have time to make a batch of protective proteins.

"Blocking protein synthesis–and promoting cellular energy levels by regulating mitochondrial shape–seems to be an effective way of combatting stress over shorter time scales," says Aparajita Madhavan, graduate student at TSRI and co-first author of the study.

Wiseman thinks defects in PERK sensitivity/activation caused by aging or mutations might hinder this protective regulation of mitochondria. He says defects in PERK signaling are implicated in many diseases that also include mitochondrial dysfunction, such as diabetes, heart disease, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease. He hopes the new work could point to a way to target this aspect of PERK signaling to correct mitochondria defects that cause disease.

###

Additional authors of the study, "The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology During Acute Endoplasmic Reticulum Stress," were co-first authors Vivian W. R. Moraes and Jaclyn Saunders, as well as co-authors Nicole Madrazo and Mary C. Anthony of The Scripps Research Institute (TSRI).

The study was supported by the National Institutes of Health (grant NS095892) and a George Hewitt Foundation postdoctoral fellowship.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

https://www.scripps.edu/news/press/2018/20180314_aging_disease.html

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2018.02.055

Share12Tweet8Share2ShareShareShare2

Related Posts

Spatial Cues Drive Multiplexed Theta Coding

August 26, 2025

BU Study Reveals How Type 2 Diabetes Blood Factors Fuel Breast Cancer Aggressiveness

August 26, 2025

Smart Virtual Screening for JAK3 Covalent Inhibitors

August 26, 2025

Educating on Inequality Boosts Women in Biomedical Engineering

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unseen Whirlwinds: Researchers Discover ‘Hidden’ Vortices That May Impact Soil and Snow Movement

Higher Skin Autofluorescence Signals Cancer Risk

Spatial Cues Drive Multiplexed Theta Coding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.