• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nanospears deliver genetic material to cells with pinpoint accuracy

Bioengineer by Bioengineer
March 14, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a step toward accelerating the production of new gene therapies, scientists report in ACS Nano that they have developed remote-controlled, needle-like nanospears capable of piercing membrane walls and delivering DNA into selected cells. They say the new technique, which can ferry biological materials to cells with pinpoint accuracy, overcomes many of the existing barriers to effective gene modification.

Medical interventions based on the use of genetically modified cells are an emerging area of stem cell and cancer immunology research. Existing approaches to delivering DNA into cells for producing these gene therapies include viruses, external electrical fields or harsh chemical reagents. But these methods are often costly, inefficient and harmful to the cells. Researchers have experimented with sharp-tipped nanoparticles stuck on surfaces to deliver biomolecules to cells, but it is difficult to remove the modified cells from the nanoparticle-coated surface for further study. Self-propelled nanoparticles also can deliver molecules to cells in the body. However, these devices are difficult to precisely control and can generate toxic byproducts. To overcome these issues, Steven J. Jonas, Paul S. Weiss, Xiaobin Xu and colleagues sought to create biocompatible nanospears that can be configured to transport DNA into cells precisely using an external magnetic field without either damaging the cells or having to use chemical propellants.

The researchers fabricated nanospears using polystyrene beads as a template. They placed the beads onto silicon and etched them down into a tiny, sharp spear shape. The beads were removed, and the resulting silicon spears were coated with thin layers of nickel and gold. The gold was functionalized so that biomolecules, such as DNA, could attach. Then, the researchers removed the nanospears from the silicon by mechanical scraping. Because the nickel layer is magnetic, the particles' movement and orientation could be precisely controlled with a magnet. This capability allowed the researchers to maneuver the nanospears in a lab dish to modify brain cancer cells so that they expressed a green fluorescent protein. After making contact and penetrating the cells, the nanospears released their DNA cargo. After the experiment, more than 90 percent of the cells remained viable and more than 80 percent exhibited green fluorescence, showing that the method is less harmful and more effective than other non-viral approaches. The researchers conclude this technique could eventually lead to new ways to prepare vast numbers of cells for the coordinated manufacture of gene therapies.

###

The authors acknowledge funding from the National Science Foundation, the National Institutes of Health, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, the Hyundai Hope on Wheels Foundation, the Alex's Lemonade Stand Foundation, the UCLA David Geffen School of Medicine Regenerative Medicine Theme Award, the National Science Foundation of China and the Royal Thai Government.

The paper's abstract will be available on March 14 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acsnano.8b00763

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionary Classifier Uncovers Prokaryotic Efflux Proteins

October 6, 2025
N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

October 6, 2025

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

October 5, 2025

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Can Targeting Inflammation Alleviate Fatigue in Early-Stage Breast Cancer Patients?

Advancing Health Recommender Systems: A New Nursing Framework

Age, Insects Shape Cadaver Microbes, Aid PMI

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.