• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Machines see the future for patients diagnosed with brain tumors

Bioengineer by Bioengineer
March 13, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For patients diagnosed with glioma, a deadly form of brain tumor, the future can be very uncertain. While gliomas are often fatal within two years of diagnosis, some patients can survive for 10 years or more. Predicting the course of a patient's disease at diagnosis is critical in selecting the right therapy and in helping patients and their families to plan their lives.

Researchers at Emory and Northwestern Universities recently developed artificial intelligence (AI) software that can predict the survival of patients diagnosed with glioma by examining data from tissue biopsies. The approach, described in Proceedings of the National Academy of Sciences, is more accurate than the predictions of doctors who undergo years of highly-specialized training for the same purpose.

Doctors currently use a combination of genomic tests and microscopic examination of tissues to predict how a patient's disease will behave clinically or respond to therapy. While genomic testing is reliable, these tests do not completely explain patient outcomes, and so microscopic examination is used to further refine prognosis. Microscopic examination, however, is very subjective, with different pathologists often providing different interpretations of the same case. These interpretations can impact critical decisions like whether a patient enrolls in an experimental clinical trial or receives radiation therapy as part of their treatment.

"Genomics have significantly improved how we diagnose and treat gliomas, but microscopic examination remains subjective. There are large opportunities for more systematic and clinically meaningful data extraction using computational approaches," says Daniel J. Brat, MD, PhD, the lead neuropathologist on the study, who began developing the software while at Emory University and the Winship Cancer Institute. Brat currently is chair of pathology at Northwestern University Feinberg School of Medicine.

The researchers used an approach called deep-learning to train the software to learn visual patterns associated with patient survival using microscopic images of brain tumor tissue samples. The breakthrough resulted from combining this advanced technology with more conventional methods that statisticians use to analyze patient outcomes. When the software was trained using both images and genomic data, its predictions of how long patients survive beyond diagnosis were more accurate than those of human pathologists. The study used public data produced by the National Cancer Institute's Cancer Genome Atlas project to develop and evaluate the algorithm.

"The eventual goal is to use this software to provide doctors with more accurate and consistent information. We want to identify patients where treatment can extend life," says Lee A.D. Cooper, PhD, the study's lead author, a professor of biomedical informatics at Emory University School of Medicine and member of the Winship Cancer Institute. "What the pathologists do with a microscope is amazing. That an algorithm can learn a complex skill like this was an unexpected result. This is more evidence that AI will have a profound impact in medicine, and we may experience this sooner than expected."

The researchers also demonstrated that the software learns to recognize many of the same structures and patterns in the tissues that pathologists use when performing their examinations. "Validation remains a barrier to using these algorithms in patient care. Being able to explain why an algorithm works is an important step towards clinical implementation."

The researchers are looking forward to future studies to evaluate whether the software can be used to improve outcomes for newly diagnosed patients.

###

Media Contact

Holly Korschun
[email protected]
404-727-3990
@emoryhealthsci

http://whsc.emory.edu/home/news/index.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.