• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rice U. lab surprised to find its drug-delivery system can help even without drugs

Bioengineer by Bioengineer
March 13, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Hartgerink Research Group/Rice University

Sometimes when you're invested in a project you fail to notice things that turn out to be significant.

Researchers in the Rice lab of chemist and bioengineer Jeffrey Hartgerink had just such an experience with the hydrogels they developed as a synthetic scaffold to deliver drugs and encourage the growth of cells and blood vessels for new tissue.

To do so, they often tested the gels by infusing them before injection with bioactive small molecules, cells or proteins. What they didn't realize until recently was that the hydrogel itself has significant therapeutic qualities.

The lab reported in the Elsevier journal Biomaterials that a particular hydrogel, a self-assembling multidomain peptide (MDP) with the amino acid sequence K2(SL)6K2, is indeed bioactive.

Once Hartgerink and his team started to investigate the phenomenon, they found that even without additives their MDP is rapidly infiltrated by host cells, provokes a temporary inflammatory response, does not develop a fibrous capsule, supports the infiltration of a mature vascular network and recruits nerve fibers.

"We were surprised to find this strong effect in what we had previously considered to be a control peptide," Hartgerink said. "As it turned out, the inherent structure and chemistry of this peptide, despite being quite simple, results in a strong biological response."

The hydrogel, which can be delivered through a syringe, is designed to degrade over six weeks and leave behind healthy tissue. Because the peptides are designed from the bottom up to mimic their natural counterparts, the lab found they create an optimal environment for the body's own systems to encourage healing.

The researchers reported the natural inflammatory response when a foreign substance like a hydrogel is introduced into a system and draws cells that secrete proteins involved in cellular infiltration, scaffold degradation, vascularization and innervation. Tests on injected hydrogel showed a "statistically significant" increase in the presence of cytokines known to provoke an inflammatory response, as well as an increase in anti-inflammatory agents, both of which remained steady after day three and through two weeks.

That, Hartgerink said, indicates the hydrogel appears to harness the body's innate capacity to heal as it transitions from a pro-inflammatory to a pro-healing environment.

"As we eventually discovered, this exceptional peptide allows the body to carry out healing on its own, but with a significant boost," he said. "We believe the key step is the initial, and very rapid, cell infiltration. Once these cells are on location, they produce everything they need for an impressive regenerative response, including angiogenesis and neurogenesis."

Hartgerink said the lab is pursuing application of the peptide for wound-healing in diabetic ulcers.

###

Rice graduate student Amanda Moore is lead author of the study. Co-authors are Rice graduate students Tania Lopez Silva, Nicole Carrejo, Carlos Origel Marmolejo and I-Che Li. Hartgerink is a professor of chemistry and of bioengineering.

The National Institutes of Health, the Welch Foundation, the National Science Foundation, the Mexican National Council for Science and Technology and a Stauffer-Rothrock Fellowship supported the research.

Read the abstract at https://www.sciencedirect.com/science/article/pii/S0142961218300462

This news release can be found online at http://news.rice.edu/2018/03/13/hydrogel-helps-heal-without-additives/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Slow-release hydrogel aids immunotherapy for cancer: http://news.rice.edu/2018/03/07/slow-release-hydrogel-aids-immunotherapy-for-cancer-2/

Hartgerink Research Group: http://www.ruf.rice.edu/~jdh/

Lei Lab: http://media.dent.umich.edu/labs/lei/

Rice Department of Chemistry: http://chemistry.rice.edu

Rice Department of Bioengineering: http://bioe.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
[email protected]
713-348-6327
@RiceUNews

http://news.rice.edu

Related Journal Article

http://dx.doi.org/10.1016/j.biomaterials.2018.01.033

Share14Tweet7Share2ShareShareShare1

Related Posts

Exploring 25 Key Themes in Integrated Child Care

October 12, 2025

AI Enhances Skull Stripping Techniques Throughout Lifespan

October 12, 2025

Transforming Agrifood Jobs and Compensation Structures

October 12, 2025

Revealing Alpha-Synuclein Oligomers in Parkinson’s Brain

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1226 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Skin Patch Delivers Multimodal Haptic Feedback

Exploring 25 Key Themes in Integrated Child Care

AI Enhances Skull Stripping Techniques Throughout Lifespan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.