• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Saliva plays a role in the body’s defense against traveler’s diarrhea

Bioengineer by Bioengineer
March 8, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(Boston)–Researchers have identified a protein in saliva (histatin-5) that protects the body from traveler's diarrhea.

The findings, available online in the Journal of Infectious Diseases, may lead to the development of new preventive therapies for the disease.

Traveler's diarrhea is an inconvenience to many in the U.S., but worldwide it can be deadly. It produces a watery diarrhea, which can cause life-threatening dehydration in infants or other vulnerable populations in endemic countries. With more than one billion cases each year, hundreds of thousands of deaths can be attributed to this bacterial disease which is caused by enterotoxigenic Escherichia coli (ETEC), invading the small intestine using arm-like structures called "pili."

Researchers from Boston University School of Medicine (BUSM) and collaborators exposed miniature human small intestines that they were able to grow in a dish (organoids) to the bacteria ETEC in the presence and absence of the protein histatin-5. When examined under the microscope, significantly fewer bacteria were able to attach to the tissue in the presence of histatin-5.

"We found that the protein histatin-5 present in human saliva stiffens the pili of ETEC, preventing the bacteria from effectively adhering to the small intestine," explained corresponding author Esther Bullitt, PhD, associate professor of physiology and biophysics at BUSM. "If they can't attach, they simply can't cause disease."

Prior to this study, it was not known that saliva could play such a large role in protecting the body from gut infections. According to the researchers, this initial line of defense in the mouth likely explains why it takes such a large number of ETEC to infect a human. They also suggest that histatin-5 might be manufactured as a dissolvable powder and used to prevent traveler's diarrhea in the future.

This new finding opens up the possibility that other salivary proteins might exist which protect against many other diseases, including infectious gastritis, food poisoning or even pneumonia. "We believe that our data represent the first example of a new paradigm in innate immunity: the contributions of salivary components to preventing infection. This research opens an untapped avenue for prevention of enteric infectious diseases through the targeted use of naturally occurring components of saliva."

###

Funding for this study was provided by a Boston University Graduate Student Research Fellowship and National Institutes of Health (NIH) T32DK007130 to J. W. B.; NIH DK077653 to D. M. A.; NIH AI101067 to E. J. H.; NIH DE05672 and NIH DE07652 to F. G. O.; NIH DK094989, and DK105129, the Alvin J. Siteman Cancer Center/Barnes Jewish Hospital Foundation Cancer Frontier Fund, National Cancer Institute, NIH P30CA091842 and the Barnard Trust to J. C. M.; NIH DK109384 and R21CA206039 to M. A. C.; VA 5I01BX001469-05, NIH R01AI126887 and NIH R01AI089894 to J. M. F.: NIH GM055722 to E. B.; and NIH P30DK052574.

Media Contact

Gina DiGravio
[email protected]
617-638-8480
@BUMedicine

http://www.bmc.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.