• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery shows wine grapes gasping for breath

Bioengineer by Bioengineer
March 1, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Adelaide

University of Adelaide researchers have discovered how grapes "breathe", and that shortage of oxygen leads to cell death in the grape.

The discovery raises many questions about the potentially significant impacts on grape and wine quality and flavour and vine management, and may lead to new ways of selecting varieties for warming climates.

"In 2008 we discovered the phenomenon of cell death in grapes, which can be implicated where there are problems with ripening. We've since been trying to establish what causes cell death," says Professor Steve Tyerman, Chair of Viticulture at the University of Adelaide's Waite campus.

"Although there were hints that oxygen was involved, until now we've not known of the role of oxygen and how it enters the berry."

Professor Tyerman and PhD student Zeyu Xiao from the University's Australian Research Council (ARC) Training Centre for Innovative Wine Production have identified that during ripening, grapes suffer internal oxygen shortage. The research was in collaboration with Dr Victor Sadras, South Australian Research and Development Institute (SARDI), and Dr Suzy Rogiers, NSW Department of Primary Industries, Wagga Wagga.

Published in the Journal of Experimental Botany, the researchers describe how grape berries suffer internal oxygen shortage during ripening. With the use of a miniature oxygen measuring probe – the first time this has been done in grapes – they compared oxygen profiles across the flesh inside grapes of Chardonnay, Shiraz and Ruby Seedless table grape.

They found that the level of oxygen shortage closely correlated with cell death within the grapes. Respiration measurements indicated that this would be made worse by high temperatures during ripening – expected to happen more frequently with global warming.

"By manipulating oxygen supply we discovered that small pores on the surface of the berry stem were vital for oxygen supply, and if they were blocked this caused increased cell death within the berry of Chardonnay, essentially suffocating the berry. We also used micro X-ray computed tomography (CT) to show that air canals connect the inside of the berry with the small pores on the berry stem," says Mr Xiao.

"Shiraz has a much smaller area of these oxygen pores on the berry stem which probably accounts for its greater sensitivity to temperature and higher degree of cell death within the berry."

Professor Vladimir Jiranek, Director of the University of Adelaide's ARC Training Centre for Innovative Wine Production, says: "This breakthrough on how grapes breathe will provide the basis for further research into berry quality and cultivar selection for adapting viticulture to a warming climate."

###

The study was supported by the Australian Government's Industrial Transformation Research Program with support from Wine Australia and industry partners.

Media Contact:

Professor Steve Tyerman, Chair of Viticulture, University of Adelaide. Phone: +61 (8) 8313 6663, Mobile: +61 (0) 411 776 050, [email protected]

Zeyu Xiao, PhD candidate, School of Agriculture, Food and Wine, University of Adelaide. Mobile: +61 (0) 415 134 595, [email protected]

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, [email protected]

Media Contact

Steve Tyerman
[email protected]
61-041-177-6050
@UniofAdelaide

http://www.adelaide.edu.au

Related Journal Article

http://dx.doi.org/10.1093/jxb/ery039

Share20Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.