• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Vertical measurements of air pollutants in urban Beijing

Bioengineer by Bioengineer
March 4, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The photo on the left was taken by SUN Yele; The photo on the right was taken by the camera installed on the Tower.

Severe haze episodes with surprisingly high concentrations of fine particles (PM2.5) still occur in fall and winter seasons in Beijing, although the air quality has been improved in recent years. Air pollution often shows strong vertical differences in Beijing. For example, we can feel fresh air with a good visibility at the peak of a mountain on a hazy day, while the city is actually buried in a low visibility and severely polluted air. In the urban area, we also often observe the coexistence of haze and blue sky (Figure 1). To gain an in-depth understanding of the vertical evolution characteristics of air pollutants within urban boundary layer, a team of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, CAS, used a container that can travel on the Beijing 325 m Meteorological Tower for the vertically resolved measurements of light extinction coefficient of dry fine particles, gaseous NO2, and black carbon (BC) (Figure 2) from ground surface to 260 m during daytime, and 200 m at nighttime. Simultaneously, non-refractory submicron aerosol (NR-PM1) species including organics, sulfate, nitrate, ammonium and chloride, were measured at ground level and 260 m on the tower with an Aerodyne High-Resolution Aerosol Mass Spectrometer (HR- AMS) and an Aerosol Chemical Speciation Monitor (ACSM), respectively. Four distinct types of vertical profiles were illustrated, and the vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. The team found that the temperature inversion coupled by the interactions of different air masses elucidated the "blue sky – haze" co-existent phenomenon as shown in Figure 1. The tower-based vertically resolved measurements prove to be essential supplements to lidar measurements with a blind zone, typically below 200 m. The findings have recently been published in Atmospheric Chemistry & Physics).

###

Media Contact

Zheng Lin
[email protected]
86-108-299-5053
@aasjournal

http://english.iap.cas.cn/

Original Source

https://www.atmos-chem-phys.net/18/2495/2018/acp-18-2495-2018.html http://dx.doi.org/10.5194/acp-18-2495-2018

Share12Tweet7Share2ShareShareShare1

Related Posts

Anthelmintic Potential of Evolvulus nummularius Revealed

Anthelmintic Potential of Evolvulus nummularius Revealed

September 9, 2025
Evolving Rubisco Solubility Boosts Plant Productivity

Evolving Rubisco Solubility Boosts Plant Productivity

September 9, 2025

New Insights into Mesonephric Carcinoma and Mesonephric-Like Adenocarcinoma of the Female Genital Tract

September 9, 2025

Combined Impact of Weather and Air Pollution on Influenza Trends in Huaian, China

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Noncoding RNA Signature Predicts T-DM1 Benefit in HER2+ Breast Cancer

Anthelmintic Potential of Evolvulus nummularius Revealed

Optimizing Cobalt-60 Brachytherapy in Resource-Limited Areas

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.