• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

JHU scientists discover how extremophiles flourish in stressful environments

Bioengineer by Bioengineer
March 2, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Thousands of molecules of ribonucleic acid make salt-loving microbes known as "extremophiles" highly resistant to the phenomenon oxidative stress – the uncontrollable production of unstable forms of oxygen called "free radicals," which can negatively affect DNA, proteins, and lipids in cells.

In a study published recently in the Journal of Bacteriology, Johns Hopkins University scientists found that a group of RNAs – that do not form protein – orchestrate this resilience in extremophiles requiring high salt concentrations called Haloarchaea, to grow without signs of damage.

"Oxidative stress is essentially a byproduct of the fact that there is oxygen present in our atmosphere," said the paper's lead author, Diego Rivera Gelsinger, a graduate student in the university's Department of Biology. "Once it damages the molecules essential for life, those molecules can themselves produce more free radicals, which will then propagate more damage." This snowballing effect can cause extensive injury and even death, Gelsinger said.

Gelsinger, who works with Jocelyne DiRuggiero, an associate research professor in the Department of Biology with an appointment in the Department of Earth and Planetary Sciences, said salt-needing microbes or Haloarchaea not only survive but thrive in extreme environments.

These microbes flourish in very salty environments such as in the small pores of salt rocks from the Atacama Desert in Chile or in the salt beds of the Dead Sea. They endure the heights of solar radiation, salinity, and dryness that cause massive oxidative stress and kill most life forms.

Oxidative stress is the underlying cause of several human conditions from neurodegenerative and cardiovascular diseases to cancer and even the aging process. Understanding the causes of this stress-resistance unique to Haloarchaea could help researchers learn what other species, like humans, need to tackle the damage caused by oxidative stress.

To understand the extremophile's resistance to oxidative stress, Gelsinger examined its ribonucleic acid profile under hydrogen peroxide as an agent of the stress. Along with messenger RNA, which is needed to create proteins, he observed large quantities of something surprising – small noncoding RNA. Unlike messenger RNA, which acts as the go-between for DNA and proteins, noncoding RNAs do not seem to turn into protein.

"My findings strongly suggest that the [noncoding RNA] actually causes the messenger RNA to degrade and be cut up," Gelsinger said. By effectively blocking the production of protein or breaking down the messenger RNA, the proteins that play a role in oxidative stress were simply not made.

Moreover, Gelsinger said, these noncoding RNAs affect multiple targets, having a large-scale effect. Pieces of DNA that are jumpy, particularly in times of stress, and hop around in the genome of organisms, called transposons, are targets for such regulatory small RNAs. By disrupting the disruptors, these RNAs possibly keep in check further damage caused by transposons, allowing extremophiles to repair the damage caused by oxidative stress.

"What we found is that a lot of these noncoding RNAs are causing the degradation of those transposons, so they are essentially silencing them," said Gelsinger. With fewer transposons hopping around, damage to the DNA is reduced.

Among other targets of the small noncoding RNAs were messenger RNAs that aid in guiding microbes towards or away from food or other chemical agents, as well as those that reign in damaged proteins and prevent injured cells from growing. These noncoding RNAs also targeted a class of molecules that decide which proteins – and how many of them – are formed. "If you can regulate the regulator, you can get a much faster, larger effect than just directly regulating your target," said Gelsinger. The enveloping effect of these noncoding RNAs appears to contribute heavily to the oxidative stress resistance found within Haloarchaea. Furthermore, Gelsinger believes, identifying targets that make Haloarchaea more resistant to oxidative stress and understanding how they behave can better equip researchers in pinpointing promising possibilities for improved treatment of human diseases caused by this state.

###

This work was supported by grant FA9950-14-1-0118 from the Air Force Research Laboratory (AFOSR).

Media Contact

Tracey Reeves
[email protected]
443-997-9903
@JohnsHopkins

http://www.jhu.edu

http://dx.doi.org/10.1128/JB.00779-17

Share12Tweet7Share2ShareShareShare1

Related Posts

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025
Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

October 3, 2025

Microscopic Sugars in the Brain Alter Emotional Pathways, Driving Depression

October 3, 2025

Plant Mobile Domain Proteins Resist Polycomb Gene Silencing

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.