• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New tool mines whole-exome sequencing data to match cancer with best…

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

A University of Colorado Cancer study published today in the Journal of the American Medical Informatics Association (JAMIA) describes a new tool that interprets the raw data of whole exome tumor sequencing and then matches the cancer's unique genetics to FDA-approved targeted treatments.

"Whole exome sequencing is becoming more available to patients and this tool will help them distill the sequencing data to candidate genes and link them with therapies," says Aik Choon Tan, PhD, investigator at the CU Cancer Center, associate professor of Bioinformatics at the CU School of Medicine, and the paper's senior author.

The tool, called Integrating Molecular Profiles with Actionable Therapeutics, or IMPACT, starts with the data generated by whole-exome sequencing – a string of A, T, C and G hundreds of millions of letters long. IMPACT then maps this string onto the human genome to partition the raw data into segments that correspond to the body's approximately 20,000 genes. The tool then compares the code of these genes to "normal" gene patterns to discover which genes differ in ways that could guide the development of cancer. (In a second step, IMPACT also counts the number of gene repeats, which when adjusted higher or lower can also drive the growth of cancer.)

"Now we have a list of candidate genes," Tan says. "The next step is to link candidate genes with therapeutics."

IMPACT does this by mining publicly available data including that of the NCI-MATCH clinical trial and the database at MyCancerGenome.org to discover which FDA-approved therapies target these candidate genes.

The Tan lab tested the tool by inputting whole-exome sequencing data for patients known to have EGFR-mutated non-small cell lung cancer from The Cancer Genome Atlas. Sure enough, IMPACT successfully identified the gene EGFR as a driving mutation and recommended FDA-approved EGFR inhibitors.

In collaboration with the laboratory of CU Cancer Center investigator William A. Robinson, MD, PhD, Tan and colleagues then used the tool to retrospectively analyze a series of exome-sequences from patients diagnosed with melanoma, validating the tool's ability to discover a patient's activating mutation and pair it with useful treatment.

"For example, a patient was found to have a BRAF mutation and was put on a clinical trial of the drug vemurafenib, which targets BRAF alterations," Tan says.

The drug controlled the patient's tumor. However, two years later the tumor relapsed. At this point, the group resequenced the tumor and found that in addition to BRAF mutation, the patient had developed NRAS mutation.

"Taking tumor samples over time, we could see the cancer cell figuring out how to become resistant," Tan says.

However, drugs also exist to disrupt cells that depend on NRAS mutation. The combination of dabrafenib (for BRAF) and trametinib (for NRAS) controlled the patient's melanoma for another two years. When the cancer relapsed, it was again resequenced and evaluated using IMPACT. Analysis showed loss of the gene CDKN2a, a known tumor suppressor gene that keeps in check cells that have learned to speed through the process of replication. Currently there are no inhibitors of the CDK family of genes approved by the FDA to treat melanoma. However, the drug palbocicilib recently earned FDA approval to treat a subset of breast cancers.

"We are trying to see if we can treat this melanoma with a CDK inhibitor. Will this drug overcome the cancer's resistance to the previous combination?" Tan says.

The IMPACT tool works in four steps: 1) identify possible cancer-causing mutations; 2) identify possible cancer-causing gene copy number alterations; 3) match cancer's genetic causes with the most likely therapeutic controls; 4) evaluate the ongoing evolution of cancer to continue matching controls with emerging causes.

"We hope that IMPACT proves to be an important tool in empowering the shift toward precision medicine," Tan says.

###

Media Contact

Garth Sundem
[email protected]
@CUAnschutz

http://www.ucdenver.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.