• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

In rats that can’t control glutamate, cocaine is less rewarding,…

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Zheng-Xiong Xi and Lauren Brick

Rats missing a neuroreceptor that controls the release of the neurotransmitter glutamate are less amenable to the rewarding effects of cocaine, increasing their chance of kicking the habit once addicted, researchers from the National Institute on Drug Abuse (NIDA) find. Their work, appearing July 11 in Cell Reports, suggests that the receptor, which protects nerve cells from fatal inundation by excess glutamate, is involved in modulating the reward-seeking behavior associated with drug addiction.

By silencing the gene responsible for expressing the receptor, called mGluR2, the researchers studied its effect across the stages of the cocaine addiction cycle. Rats without the receptor were more likely to consume cocaine when it was made freely available but less likely to seek out cocaine when they had to demonstrate more effort to obtain it. When cocaine was no longer available to them, the rats were quicker to cease the behaviors that had previously resulted in the drug's delivery. Even when cocaine was subsequently re-introduced, they showed reduced interest for drug seeking, constituting a lower rate of relapse.

"The gene-knockout mice don't enjoy much reward when they take the cocaine. So when the drug is available to them, the animals work to increase their intake to feel rewarded," says senior author Zheng-Xiong Xi, an addiction researcher at NIDA. "But when the drug is difficult to get, the reward isn't worth it anymore, the animal just wants to quit."

This apparent incongruity between increased early cocaine use and decreased later relapse is resolved by a single explanation: low or absent mGluR2 expression causes the rodents to experience a lessened neurological reward when taking cocaine, as measured by intracranial probing of brain stimulation.

At the cellular level, the research illuminates the role that glutamate–the most abundant neurotransmitter in all vertebrates and a prominent contributor to pathways of learning, memory, and anxiety in humans–plays in cocaine addiction, going beyond previous findings that focused on dopamine response, more commonly associated with reward seeking, as the main culprit. Deleting mGluR2 causes nerve cells to be awash in glutamate before any cocaine is ingested. Since cocaine "works" by binding to receptors in place of neurotransmitters like glutamate and dopamine, forcing them to float around and excite synapses, the preexisting flood of glutamate limits its power to deliver a neurological reward.

In the long run, mGluR2's involvement in reward circuits could let it pack a double punch as a biomarker for predicting risk of cocaine addiction and as a therapeutic target for drug development. "Our work suggests that, if you could take a medicine to activate mGluR2 activity, then it would decrease or significantly inhibit both cocaine-taking and cocaine-seeking behaviors," Xi says.

The researchers also plan on studying the influence of mGluR2–which has been preliminarily associated with alcohol and nicotine addictions–in relation to opiates such as heroin. "It seems that mGluR2 may be a common target for treating addictions to many drugs," Xi says.

###

This work was supported by the Intramural Research Program of the National Institute on Drug Abuse.

Cell Reports, Yang et al.: "Deletion of Type 2 Metabotropic Glutamate Receptor (mGluR2) Decreases Sensitivity to Cocaine Reward in Rats" http://www.cell.com/cell-reports/fulltext/S2211-1247(17)30860-4

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact [email protected]

Media Contact

Arjuna Subramanian
[email protected]
617-335-6270
@CellPressNews

http://www.cellpress.com

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2017.06.046

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.