• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genetic mechanisms underlying phenotype convergence of pandas revealed

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IOZ

Convergent evolution, i.e., parallel evolution of identical or similar traits in distantly related species under similar selective pressures, is a research hotspot in evolutionary biology.

Although there are many examples of convergent evolution in nature, the genetic insights into convergent evolution are far less clear. Traditional candidate genes method has limited abilities to uncover the genetic mechanisms of convergent evolution; in contrast, genome-scale analysis provides faster and more comprehensive insights.

The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), two species that diverged over 40 million years ago, have distinct phylogenetic positions in the order Carnivora. The giant panda belongs to the family Ursidae, whereas the red panda belongs to the family Ailuridae within the superfamily Musteloidea.

However, both pandas have evolved specialized bamboo diet (>90%) and adaptive pseudothumbs that facilitate bamboo grasping, representing a classic example of adaptive evolution and convergent evolution.

Especially, the popular 1980 book, "The Panda's Thumb", written by Stephen J. Gould, discussed the evolution of the giant panda's pseudothumb, attracting many public interests.

However, until recently, the genetic mechanisms underlying the morphological and physiological convergences in both pandas remain unclear.

Recently, a research team led by Prof. WEI Fuwen from the Institute of Zoology, Chinese Academy of Sciences, used comparative genomics to reveal the molecular mechanisms of convergent evolution in both pandas.

They de novo sequenced and assembled the red panda whole genome, and re-assembled the giant panda whole genome with added sequencing data.

Phylogenomic analysis supported the molecular-based phylogenetic conclusions: the giant panda belongs to the Ursidae and the red panda belongs to the Musteloidea, with the divergence time of 47.5 million years ago estimated.

Genome-scale analysis of adaptive convergence identified 70 adaptively convergent genes in both pandas, some of which were significantly functional enriched in cilium assembly, appendage and limb development, protein digestion and absorption, and retinol metabolism terms or pathways.

Two limb development genes, DYNC2H1 and PCNT, are important candidate genes responsible for pseudothumb development. Their mutations are known to produce polydactyly in humans and mice through affecting cilia structure and sonic hedge-hog pathway.

Adaptive convergence has also occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, essential fatty acids, and vitamins, which may enhance the absorption and utilization of these essential nutrients in both pandas to cope with low-nutrition bamboo diet.

Additionally, genome-wide pseudogenization analysis identified 10 common pseudogenes in giant and red pandas, including the umami taste receptor gene TAS1R1.

As an interesting genetic convergence scenario, convergent pseudogenization of TAS1R1 may be an evolutionary response to the dietary shift from carnivory and omnivory to herbivory.

These findings demonstrate that genetic convergence occurred at multiple levels spanning metabolic pathways, amino acid convergence, and pseudogenization, providing rich insights into both pandas' morphological and physiological convergences and also offering a fascinating example for genome-scale convergent evolution analysis of dietary shift and specialization.

This study entitled "Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas" has been published online in PNAS.

###

This study was supported by grants from the National Natural Science Foundation of China, Ministry of Science and Technology, and Chinese Academy of Sciences.

Media Contact

WEI Fuwen
[email protected]

http://english.cas.cn/

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.