• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First surface-based estimation of the aerosol indirect effect over…

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jianjun Liu

Aerosol indirect effect (AIE) can significantly affect climate change and is one of the largest uncertainties in climate change studies. To date, only a few AIE studies using satellite measurements have been carried out in China, and no such study has been done using ground-based measurements. The AIE can only be assessed accurately from aircraft or ground-based measurements. The first comprehensive investigation into the AIE over this polluted region is presented, based upon extensive ground-based measurements, in a recent paper published in Advances in Atmospheric Sciences.

The authors of the paper, Dr. Jianjun LIU and Prof. Zhanqing LI, from the Earth System Science Interdisciplinary Center of the University of Maryland, USA, began by investigating the AIE over the polluted region of southeastern China, based on extensive measurements of clouds, aerosols, radiative properties, and meteorological factors, during the Atmospheric Radiation Measurement Mobile Facility experimental campaign in China. They found significant AIEs observed by the surface-based measurements; however, the AIEs studied based on satellite measurements had large uncertainties over this region because of some inherent limitations.

Next, the authors examined the influence of aerosols on cloud microphysical properties and the diurnal cycle of cloud properties. Dr. Jianjun LIU explains that "the aerosols significantly affected the cloud microphysical properties, based on the surface-based measurements. The relationship between the CER [cloud droplet effective radius] and AI [aerosol index] is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. The sensitivities of CER and LWP [liquid water path] to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP and COD. The calculated AIEs based on two cloud parameters are similar in magnitude and close to the typical FIE [first indirect effect] value of ~0.23. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations."

Prof. Zhanqing LI goes on to say that "the use of ground-based measurements is one of the important approaches to quantify the magnitude of the AIE and investigate the underlying mechanisms".

###

Media Contact

Zheng Lin
[email protected]
86-108-299-5053
@aasjournal

http://english.iap.cas.cn/

Original Source

https://link.springer.com/article/10.1007/s00376-017-7106-2 http://dx.doi.org/10.1007/s00376-017-7106-2

Share12Tweet7Share2ShareShareShare1

Related Posts

Blighia sapida Extract Fights Malaria, Protects Liver

Blighia sapida Extract Fights Malaria, Protects Liver

November 15, 2025
Africa’s Tick Diversity and Emerging Pathogens Explored

Africa’s Tick Diversity and Emerging Pathogens Explored

November 15, 2025

Enhancing Wheat Defense Against Septoria Tritici Blotch

November 15, 2025

Schistosomiasis Epidemiology and Challenges Along Shabelle River

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Virally Delivered siRNA Targets MUC5AC to Combat Asthma

Autonomous Protein Presentation via Boolean Logic Gating

Measuring Soil-Water and Shrinkage Curves of Kaolin

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.