• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UTMB researchers protect against lethal Ebola Sudan infection four days after infection

Bioengineer by Bioengineer
February 11, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Researchers at The University of Texas Medical Branch at Galveston, in collaboration with Arbutus Biopharma Corporation, have protected nonhuman primates against Ebola Sudan four days following exposure to the virus.

The study results, which were recently published in Nature Microbiology, demonstrated that the treatment was effective at a point when animals have detectable levels of the virus in their system and were at an advanced stage of disease.

"This is a key step in our efforts to protect people from this terrible, lethal disease," said Thomas Geisbert, UTMB professor of microbiology and immunology. "The Ebola virus has five different species and will continue to impact people throughout the African continent, unfortunately with a high mortality rate."

Geisbert noted that significant progress has been made in developing therapeutics against Ebola Zaire, the species responsible for the 2014-15 outbreak in West Africa. However those drugs may not be effective against Ebola Sudan.

"That's why this latest study could be instrumental in reducing Ebola outbreaks," Geisbert said.

Since 2010, Ebola Sudan has been responsible for three outbreaks and until 2014, caused the largest outbreak of Ebola hemorrhagic fever on record, with 425 confirmed cases in Uganda in 2000.

"We were able to protect all of our nonhuman primates against a lethal Ebola Sudan infection when treatment began four days following infection," Geisbert said. "At this point, those infected showed signs of disease and had detectable levels of the virus in their blood."

Although all infected animals showed evidence of serious disease, those receiving the treatment survived and recovered. The untreated controls succumbed to the disease 8-10 days after exposure and had a disease course similar to that reported for Ebola Sudan-infected patients during outbreaks.

The treatment uses a specific short strand of RNA, known as siRNA, designed to target and interfere with the Ebola Sudan virus, rendering it harmless. One of the advantages of this approach is the ability to modify it to different viral species or strains. The siRNAs are delicate, so the researchers encapsulated them using a proprietary lipid nanoparticle (LNP) delivery technology platform developed by Arbutus Biopharma to protect the siRNAs in the bloodstream and allow efficient delivery and cellular uptake by the target cells. This clinically validated technology has been used successfully to protect non-human primates against Ebola Zaire and Marburg virus infection.

"Demonstrating protection in this uniformly lethal model of Ebola Sudan sets a high bar for determining effectiveness, as subjects were infected with a high viral dose that mimics the worst-case scenario of a needle-stick injury with concentrated viral material," said Geisbert. "The survival benefit and rapid control of viral replication with this treatment illustrate the strong potential of this evolving technology platform in combatting lethal viral infections."

###

Other authors include UTMB's Joan Geisbert, Krystle Agans, Daniel Deer, Karla Fenton and Chad Mire as well as Amy Lee and Emily Thi from Arbutus Biopharma Corporation in Vancouver, Canada.

The study was supported by the Centers of Excellence for Translational Research, which is an award of up to $26 million over a five-year period from the National Institute of Allergy and Infectious Diseases for a multi-project grant to advance the treatments of Ebola and Marburg virus infections.

Media Contact

Donna Ramirez
[email protected]
409-772-8791
@utmb_news

http://www.utmb.edu

Share14Tweet7Share2ShareShareShare1

Related Posts

Pusan National University Researchers Develop Smart Nanomaterials for Simultaneous Detection and Treatment of Traumatic Brain Injuries

Pusan National University Researchers Develop Smart Nanomaterials for Simultaneous Detection and Treatment of Traumatic Brain Injuries

November 12, 2025
blank

Membrane Remodeling Driven by Endocytic TPLATE Scaffold

November 12, 2025

Unraveling Melanism in Indian Leopards: A Genomic Study

November 12, 2025

Immune Gene Expression Patterns in Acute Stroke Unveiled

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Surface Protein Diversity Drives Trypanosoma cruzi Variation

Cohort Study Reveals Insights on ECUAging Observations

MXene-Based Sensors Revolutionize Phosphate Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.