• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Artificial muscles, tendons would make prosthetic limbs more lifelike

Bioengineer by Bioengineer
February 10, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Houston

An engineer from the University of Houston has received a $500,000 CAREER award from the National Science Foundation to develop artificial muscle and tendons for dexterous, compliant and affordable prostheses.

Zheng Chen, Bill D. Cook Assistant Professor of mechanical engineering, said the resulting prosthetics would be more comfortable and work more efficiently than current models, which involve motorized metallic parts.

Chen, director of the Bio-inspired Robotics and Controls Lab at the UH Cullen College of Engineering, works with smart materials to devise improved prostheses. These smart materials – Chen works with dielectric elastomers – have built-in actuation and sensing capabilities, allowing them to more closely mimic human muscles.

The project involves bio-inspired design, fabricating the device and developing a mechanism to control movement of prosthetic hands, using a material which can be activated by an electrical voltage.

Chen and his colleagues have developed a prototype of artificial muscle and tendon structure. "It achieves some performance, but we need to improve the performance," he said. "It is an integrated sensor and actuator, so the person can sense objects, grasp and participate in other activities."

He will use nanotechnology to push the material to achieve the necessary performance; it then will be used to construct artificial muscle and tendons.

NSF CAREER awards are granted to promising junior faculty members who exemplify the role of teacher-scholars, and recipients also do educational outreach to promote a better understanding of science and technology. In addition to his research, Chen will work with graduate and undergraduate students to train next-generation engineers to work with modeling and fabrication of devices using smart materials and structures.

Chen said he will develop a graduate-level class involving smart materials and structure. His lab also will provide an environment for undergraduate students working on senior design projects, he said.

###

Media Contact

Jeannie Kever
[email protected]
713-743-0778
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2017/SEPTEMBER%2017/09282017Chen-Artificial-Muscle.php

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Oncotarget Editor-in-Chief Wafik S. El-Deiry to Chair 2025 WIN Symposium in Partnership with APM in Philadelphia

October 1, 2025

Linking Nurses’ Emotional Skills to Care Competence

October 1, 2025

Tracking Ovarian Cancer Evolution via Cell-Free DNA

October 1, 2025

Vigabatrin’s Protective Effects Against Ovarian Injury

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    64 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

Managing Metastatic HER2+ Breast Cancer in Greece

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.