• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Targeting metals to fight pathogenic bacteria

Bioengineer by Bioengineer
February 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Researchers at the Laboratory for Molecular Infection Medicine Sweden (MIMS) at Umeå University in Sweden participated in the discovery of a unique system of acquisition of essential metals in the pathogenic bacterium Staphylococcus aureus. This research was led by scientists at the CEA in France, in collaboration with researchers at the University of Pau, the INRA and the CNRS. It represents a new potential target for the design of antibiotics. These results are being published in the journal Science on Friday 27 May.

Metals are necessary for life and pathogenic bacteria have developed elaborate systems to compensate for the low concentration of these essential metals in their environment, in particular within a host. The case of iron is particularly well documented with, in some bacteria, the production of molecules called siderophores that specifically capture iron in the medium. Researchers have now identified a new metal scavenging molecule produced in the bacterium Staphylococcus aureus and baptized it staphylopine.

The researchers highlighted the role of the key players that allow the pathogen to acquire a wide range of essential metals in the environment, such as nickel, zinc, cobalt, copper and iron (Figure 1). Three enzymes, whose functions were unknown so far, allow the production of staphylopine by the combination of three building blocks (D-histidine, amino butyrate and pyruvate). An export system expels staphylopine out of the cell where it traps the target metals from the extracellular medium. The staphylopine / metal duo can then be picked up by the cell via a specific import system (Figure 1). In the absence of these import / export systems, the virulence of Staphylococcus aureus was known to be reduced, although the origins of this phenomenon were not fully understood.

"Remarkably, a few years ago we found that many, taxonomically unrelated, bacteria can release high concentrations of a wide variety of D-amino acids to the environment. Therefore, D-histidine might be just one D-amino acid of many that could serve as a building block for novel staphylopine-like molecules," explained Felipe Cava from MIMS/Umeå University.

The discovery of staphylopine, how it is built, and how it is transported by these systems could now lead the way for the development of a new strategy against pathogenic bacteria, by targeting their addiction to metals.

Surprisingly, staphylopine closely resembles nicotianamine, a molecule that is found in all plants and that ensures the transport of essential metals from the roots, where they are collected, to the various aerial organs. The discovery of a similar metal scavenger in the three kingdoms of life (archaea, eukaryotes and now bacteria) suggests an ancient origin for this type of molecule.

###

About the publication:

Ghssein, G.*, Brutesco, C.*, Ouerdane, L.*, Fojcik C., Izaute, A., Wang, S., Hajjar, C., Lobinski, R., Lemaire, D., Richaud, P., Voulhoux, R., Espaillat, A., Cava, F., Pignol, D., Borezée-Durant, E. & Arnoux, P. (2016) Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science. DOI: 10.1126/science.aaf1018
*Contributed equally to the paper.

Participating research institutes:

  • Laboratoire de Bioénergétique Cellulaire from the Institut de biosciences et biotechnologies BIAM, Commissariat à l'énergie atomique et aux énergies alternatives CEA, Saint-Paul-lès-Durance: http://biam.cea.fr/drf/biam/english/Pages/laboratories/lbc.aspx
  • Centre national de la recherché scientifique CNRS, University of Pau: http://www.lcabie.com
  • Institut de Microbiologie de la Méditerranée, Centre national de la recherché scientifique CNRS, Aix-Marseille Université, Marseille: http://www.imm.cnrs.fr
  • Institut national de la recherche agronomique INRA: https://www.micalis.fr/micalis_eng/Poles-and-teams/Pole-Risk/MicrobAdapt-Gruss
  • Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University: http://www.mims.umu.se

Media Contact

Daniel Harju
[email protected]
46-725-522-918
@UmeaUniversity

http://www.umu.se/umu/index_eng.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.