• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sleep-inducing herb: The key component identified

Bioengineer by Bioengineer
February 10, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Tsukuba

Can't sleep? Your sleep problems may be improved if you try an Indian herb, Ashwagandha. Researchers in the sleep institute in Japan found that an active component of Ashwagandha leaves significantly induces sleep.

Ashwagandha (Withania somnifera) is a central herb in Ayurveda, the traditional home medicine native to India. As signified by its Latin name somnifera, meaning sleep-inducing, it has been recommended for sound sleep through centuries. Even though scientific studies also support that crude powder of Ashwagandha promotes sleep, the active component with sleep-inducing property remains unknown.

The research group led by Mahesh K. Kaushik and Yoshihiro Urade of the International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, investigated the effect of various components of Ashwaganda on sleep in mice by recording electroencephalogram and electromyography. The water extract of Ashwaganda leaf containing rich in triethylene glycol (TEG) promoted non-rapid eye movement (NREM) sleep significantly and changed rapid eye movement (REM) sleep slightly, while the alcoholic extract containing active withanolides showed no effect on sleep. The sleep induced by TEG was similar to normal sleep. Furthermore, commercially available TEG also increased the amount of NREM sleep. They thus concluded that TEG is the active component that induces physiologically sound sleep.

Sleeplessness and other sleep disorder such as restless leg syndrome are common complaints among the middle-aged population. Insomnia is one of the most common neuropsychiatric disorders, with an estimated incident of 10-15% in general population and 30-60% in elderly population. It is closely linked with certain other diseases including obesity, cardiovascular diseases, depression, anxiety, mania deficits etc. Currently available synthetic drugs often show severe side effects. On the other hand, Ashwagandha crude powder including the significant amount of TEG can be consumed for better sleep without any side effects. The findings in this study could revolutionize the natural plant-based therapies for insomnia and sleep related disorders.

However, the clinical application of TEG to treat insomnia is still in the immature status, because the TEG is primarily used for industrial purpose and very little is known about its applicability and toxicity to the biological systems. Further studies will thus be needed to confirm the safety of TEG.

According to the authors, they are currently evaluating the effect of TEG administration on stress, because Ashwagandha is believed to mitigate stress and correct imbalance of various nervous systems. Future studies also include the identification of target brain area of TEG, its BBB permeability and the mechanism through which TEG induces sleep.

###

This study was conducted in collaboration with Renu Wadhwa and Sunil Kaul of National Institute of Advanced Industrial Science and Technology (AIST), Japan.

Media Contact

Masataka Sasabe
[email protected]
81-298-535-857

Share12Tweet7Share2ShareShareShare1

Related Posts

Empowering Self-Advocacy in Young Adults with Disabilities

November 5, 2025

Micron-Scale Fiber Mapping Without Sample Prep

November 5, 2025

Decoding How Viruses Outperform Expectations

November 5, 2025

Exploring Career Journeys of Male Nurse Managers

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Oxide Boosts Perovskite Solar Cell Efficiency

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.