• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese researchers reveal redox sensor protein role in pathogenic mycobacteria

Bioengineer by Bioengineer
February 9, 2018
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

As one of the most successful intracellular pathogens, Mycobacterium tuberculosis (Mtb) causes 8 million cases of tuberculosis and 1.3 million deaths worldwide annually. During the course of infection, Mtb is exposed to diverse redox stresses that trigger metabolic and physiological changes.

However, it remained unclear how these stressors are sensed and relayed to the Mtb transcriptional apparatus. Researchers already knew that the ESX-1 secretion system encoding a type VII secretion system is unique to mycobacteria and is required for acute infection, while the DosRS regulon is required for long-term persistence in Mtb.

Furthermore, association of nitric oxide (NO) produced by host cells and upregulation of DosR as well as whiB6 has been documented, but how this happens remained to be elucidated.

New research carried out by scientists with the Center for Emerging Infectious Diseases, Wuhan Institute of Virology (WIV) of the Chinese Academy of Sciences, dissects the cellular role of WhiB6, one of the WhiB redox sensor family proteins, in virulence and intracellular survival of pathogenic mycobacteria.

Their study was published online on August 18 in Cell Reports.

"Using the M. marinum-zebrafish infection model, we provide compelling evidence showing that WhiB6 acts as a finely tuned regulator of the ESX-1 secretion system and DosR regulon with its Fe-S cluster in response to NO," said CHEN Zhenkang, first author of the paper.

As Mtb infection worsens, infected macrophages activate additional macrophages and other immune cells to form a granuloma, which is an organized collection of macrophages composed of mononuclear phagocytes, dendritic cells, as well as T and B lymphocytes.

"Our study reveals that WhiB6 regulation has altered function due to change toward its Fe-S cluster, which enables mycobacteria to establish persistent infection and maintain integrity of the granulomas. We propose a model to explain how WhiB6 plays in different regulatory roles to modulate the development of granulomas," said Dr. CHEN Shiyun, a principal investigator and the corresponding author of the paper.

"Our work is of great interest not only to the specific field of mycobacteriology, but also to the broader readership interested in host-pathogen interaction and related mechanisms," he said.

###

The study, "Mycobacterial WhiB6 differentially regulates ESX-1 and the Dos regulon to modulate granuloma formation and virulence in zebrafish," was supported by grants from the CAS Key Program and National Natural Science Foundation of China (NSFC). Additional authors include Bridgette Cumming and Adrie Steyn from the KwaZulu-Natal Research Institute for Tuberculosis and HIV, South Africa.

Media Contact

CHEN Shiyun
[email protected]

http://english.cas.cn/

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.