• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Theory of the evolution of sexes tested with algae

Bioengineer by Bioengineer
February 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image credit: Environmental Protection Agency

The varied sex lives of a type of green algae have enabled a University of Adelaide researcher to test a theory of why there are males and females.

The question of why different types of sex cells evolved, such as sperm and eggs (collectively known as gametes), remains uncertain.

"Why should there be males and females? Why would a situation evolve where some individuals produce small gametes that are motile or capable of motion (the males) and others produce large, non-motile gametes (the females)?" says Dr Jack da Silva, Senior Lecturer in the University of Adelaide's School of Biological Sciences.

"Sexual reproduction does not require males and females, all it requires is the fusion of sex cells from two different mating types."

The classic theory to explain the evolution of different size sex cells and therefore different sexes is the Disruptive Selection Theory and was proposed in the 1970s. It describes how a population evolves from different mating types producing same-sized sex cells (or gametes) to mating types producing different-sized gametes, such as where there are distinct males and females.

Dr da Silva has provided the first test specific to this theory – using the reproductive strategies of green algae.

"The theory is that as organisms evolve to be larger, the single-celled embryo (or zygote) is selected to be larger as well. This necessitates larger gametes to store more nutrients to give the embryo a head start in development," says Dr da Silva.

"Organisms have a limited budget for producing gametes. So if there are more they will be smaller, if there are less they will be larger. Because greater numbers of gametes gives one mating type a selective advantage – more chance of successful fertilisation – the other mating type will be forced to produce larger, and therefore fewer, gametes to enable the production of the larger zygote."

Published in the journal Ecology and Evolution, Dr da Silva tested this theory using data from studies of Volvocine algae, in which species vary considerably in their reproductive patterns: some in which two mating types produce gametes of the same size that can move (motile); others that produce motile gametes of different sizes; and others in which one mating type produces small, motile gametes and the other mating type produces large non-motile gametes (males and females).

He derived a prediction from an existing mathematical model of the Disruptive Selection Theory that states that for the evolution of males and females to remain stable, the ratio of the size of the larger gamete to the smaller gamete has to be greater than three. The maths says that if the ratio is any less, they always evolve back to being the same size.

"The algae were perfect for testing this theory: they showed the whole range of variation of gamete size differences. And the theory held. Wherever there were gametes of different sizes, the larger ones were always at least three times bigger.

"This provides the first test that is specific to this theory – previous tests have been about predictions that are common to this and similar theories. To date there hasn't been a lot of strong evidence in support of any of the competing theories, but here we have confirmed that the classic theory is probably on the right track.

Dr da Silva says it's important to understand this evolution because it helps us understand differences between males and females, such as their morphology and behaviour. "These differences between males and females stem from this original evolution of the size and motility of the sex cells," he says.

###

Media Contact:

Dr Jack da Silva, Senior Lecturer, School of Biological Sciences, University of Adelaide. Phone: +61 (0)8 8313 8083, Mobile: +61 0435 034 188, [email protected]

Robyn Mills, Media Officer, Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, [email protected]

Media Contact

Jack da Silva
[email protected]
61-435-034-188
@UniofAdelaide

http://www.adelaide.edu.au

Related Journal Article

http://dx.doi.org/10.1002/ece3.3656

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.