• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Spinal cord injury research: Bonus benefit to activity-based training

Bioengineer.org by Bioengineer.org
January 31, 2018
in Headlines, Health, Science News
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Louisville

LOUISVILLE, Ky. – Activity-based training has resulted in unexpected benefits for individuals with severe spinal cord injury (SCI). Researchers in the Kentucky Spinal Cord Injury Research Center (KSCIRC) at the University of Louisville have discovered that the training, designed to help individuals with SCI improve motor function, also leads to improved bladder and bowel function and increased sexual desire.

Research participants receiving activity-based training conducted by KSCIRC at Frazier Rehab Institute initially reported improvements in bladder, bowel and sexual function anecdotally. Charles Hubscher, Ph.D., professor and researcher at KSCIRC, has documented those changes in research published today in the journal PLOS ONE.

For individuals with severe spinal cord injury, bladder and bowel dysfunction are among the most detrimental factors to their quality of life, even more than the loss of independent mobility.

"Patients with spinal cord injury say they are most concerned by the problems associated with bladder function," Hubscher said. "These issues contribute heavily to a decline in their quality of life and impacts overall health."

Bladder dysfunction associated with SCI results in numerous health complications, requiring lifelong management and urological care in the form of catheterization, drug and surgical interventions, peripheral electrical stimulation and urethral stents. All of these therapies bring with them serious side effects and none substantially improves the basic functions.

To document changes in bladder, bowel and sexual function resulting from activity-based therapy, Hubscher and his colleagues performed urological testing (urodynamics) and asked research participants with severe spinal cord injury (SCI) to complete surveys about their bladder and other functions. Eight of the participants received activity-based training, which includes locomotor training, stepping on a treadmill with their body weight supported, and stand training in a specially designed frame. Four participants did not receive training.

The active participants' functions following training were compared with their own condition prior to training and with individuals not receiving training. Following 80 daily sessions of locomotor training with or without stand training, the active individuals were found to store significantly more urine at safer pressures, reported fewer incidents of nighttime voiding and reduced general incontinence, as well as improved bowel functioning and increased sexual desire.

"Today's published research indicates that activity-based training strengthens the neural circuits that control urogenital and bowel functions," Hubscher said. "We hope to further validate those findings by determining if the improvements can lead to elimination of related medications and/or long-term reduction in the number of daily catheterizations. In addition, we are evaluating the effects of spinal cord epidural stimulation on those circuitries."

Susan Harkema, Ph.D., professor and associate director of KSCIRC and an author of the study, said the publication highlights the value of the research collaborations at UofL.

"This work showcases the exceptional environment for research at UofL, with basic scientists working in parallel with clinicians in rehabilitation and neurosurgery," Harkema said. "There are relatively few researchers addressing bladder, bowel and sexual function both in animals and humans in chronic spinal cord injury. Dr. Hubscher's work adds a unique and valuable aspect to our research."

Epidural Stimulation Research

Researchers at KSCIRC are investigating the use of spinal cord epidural stimulation (scES) to facilitate the ability of SCI patients to stand, voluntarily control leg movements, and improve other functions. Spinal cord epidural stimulation involves the delivery of electrical signals to motor neurons in the spine by an implanted device.

In concert with this research, Hubscher is investigating the effects of scES on bladder, bowel and sexual function in SCI patients. Funded by a $3.5 million grant from the National Institutes of Health, Hubscher has begun work to map the lumbosacral spinal cord for multiple aspects of bladder function. This work will identify locations on the spine and device configurations for using scES to improve bladder storage and voiding efficiency.

The funding is through the NIH Common Fund program Stimulating Peripheral Activity to Relieve Conditions (SPARC), which aims to increase the understanding of nerve-organ interactions and neuromodulation to advance treatment of diseases and conditions for which conventional therapies fall short.

Hubscher's SPARC project has a three-year timeline and includes concurrent investigations in both animals and humans. His team will enlist six human research participants who have received scES devices and have completed the initial epidural stimulation study to assist with the development of device parameters, then test those parameters at home.

For the estimated 1,275,000 people in the United States who live with paralysis from SCI, therapies resulting from this research have the potential to increase their quality of life as well as reduce health-care costs.

###

About the Kentucky Spinal Cord Injury Research Center at the University of Louisville

The Kentucky Spinal Cord Injury Research Center (KSCIRC), opened in 2001, provides the opportunity for basic scientists, physicians, neurosurgeons and physical therapists to work collaboratively with the common goal of curing paralysis. Through close association with clinical colleagues in the UofL Department of Neurological Surgery, KSCIRC is in a unique position to conduct research designed to ultimately lead to effective treatments for spinal cord injury. This continuum of research has facilitated a "bench-to-bedside" and "bedside-to-bench" approach, where basic science questions are examined from a translational perspective and findings in the clinical setting enlighten or guide future basic scientific studies.

Media Contact

Betty Coffman
[email protected]
502-852-4573

http://www.louisville.edu

Original Source

http://uoflnews.com/releases/spinal-cord-injury-research-bonus-benefit-to-activity-based-training/ http://dx.doi.org/10.1371/journal.pone.0190998

Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.