• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Test holds potential to diagnose myriad conditions with drop of blood

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PITTSBURGH, June 9, 2016 – Researchers at the University of Pittsburgh have developed a unique method for detecting antibodies in the blood of patients in a proof-of-principle study that opens the door to development of simple diagnostic tests for diseases for which no microbial cause is known, including auto-immune diseases, cancers and other conditions.

The results, reported in the Journal of Immunological Methods and funded by the Bill & Melinda Gates Foundation, are the first evidence that it is possible to develop blood tests for any infectious disease by screening random libraries of non-biological molecular shapes.

"This 'needle-in-a-molecular haystack' approach is a new way to develop diagnostic assays," said senior author Donald S. Burke, M.D., Pitt Graduate School of Public Health dean and director of Pitt's Center for Vaccine Research. "The method does not rely on starting with known viral components. This is important because there are conditions for which there isn't a known antigen, such as newly emerged epidemics, autoimmune diseases or even responses to traumatic injury."

When a person's immune system is faced with an antigen or foreign invader, such as an infectious disease, or even an injury with tissue damage, it responds by producing antibodies. Like puzzle pieces, specific parts of the surface of these antibodies fit to the shape of the molecules on the invader or the damaged tissue.

The Pitt researchers used a technique pioneered by co-author Thomas Kodadek, Ph.D., of the Scripps Research Institute, that synthesizes random molecular shapes called "peptoids" hooked onto microscopic plastic beads. The technique can produce millions of molecular shapes. The peptoids are not organic, but if they match to the corresponding shape on an antibody, that antibody will connect to them, allowing the scientist to pull out that bead and examine that peptoid and its corresponding antibody.

Using this technique, Dr. Burke's team chemically generated a huge library of random molecular shapes. Then, using blood from HIV-infected patients and from non-infected people, the researchers screened a million of these random molecular shapes to find the ones that bound only to antibodies present in the blood of HIV-infected patients, but not the healthy controls. No HIV proteins or structures were used to construct or select the peptoids, but the approach, nonetheless, successfully led to selection of the best molecular shapes to use in screening for HIV antibodies.

The team then resynthesized that HIV-antibody-targeting peptoid in mass and tested it by screening hundreds of samples from the Multicenter AIDS Cohort Study (MACS), a confidential research study of the natural history of treated and untreated HIV/AIDS in men who have sex with men (supported by the National Institutes of Health). Study co-author Charles Rinaldo, Ph.D., chair of Pitt Public Health's Department of Infectious Diseases and Microbiology and director of the Pittsburgh arm of the MACS, selected the samples, but blinded the testers to which samples were HIV-positive or -negative. The test distinguished between the samples of HIV-positive blood and HIV-negative blood with a high degree of accuracy.

"This technology means that we may be able to take a single drop of blood from a patient and detect antibodies to all manner of infections, cancers or other conditions they may be carrying or been exposed to. We hope that this is the first step toward development of an 'Epi-chip' that can be used to reconstruct a person's entire exposure history," said Dr. Burke, who also holds the UPMC-Jonas Salk Chair of Global Health at Pitt.

###

Additional co-authors on this study are Tricia L. Gearhart, Ph.D., Ronald C. Montelaro, Ph.D., Mark E. Schurdak, Ph.D., Yongseok Park, Ph.D., Kazi Islam, Raymond Yurko and Ernesto T.A. Marques Jr., M.D., Ph.D., all of Pitt; and Chris D. Pilcher, M.D., of the University of California, San Francisco.

This work was funded by Bill & Melinda Gates Foundation grant OPP1068374. In addition to the MACS, the Consortium for the Evaluation and Performance of HIV Incidence Assays also provided blood samples.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

Contact: Wendy Zellner
Phone: 412-586-9777
E-mail: [email protected]

Contact: Allison Hydzik
Phone: 412-647-9975
E-mail: [email protected]

Media Contact

Wendy Zellner
[email protected]
412-586-9777
@UPMCnews

http://www.upmc.com/Pages/default.aspx

Share12Tweet7Share2ShareShareShare1

Related Posts

Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025
Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.