• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Elimination of specific neurons outside the brain triggers obesity

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Roksana Pirzgalska, IGC.

A research team led by Ana Domingos, from Instituto Gulbenkian de Ciencia (IGC; Portugal), developed a new genetic technique that allows the elimination of specific neurons of the peripheral nervous system without affecting the brain. Using this novel technique in mice, the researchers were able to study the function of the neurons that innervate the adipose tissue, and saw that their elimination results in mice pounding up very quickly. Published on April 3rd in Nature Communications, this technique opens new avenues for the study of many diseases related to the peripheral nervous system and to other cells outside the brain.

Interested in studying the neurobiological mechanisms underlying obesity, Domingos' laboratory had recently discovered a set of neurons that innervate the adipose tissue, and demonstrated that the direct activation of those neurons burned fat. The team now wanted to see if mice turned fat in the absence of these same peripheral neurons. Domingos' team was looking for ways to pinpoint their neurons of interest without affecting similar neurons that also exist in the brain.

To achieve this, Domingos laboratory collaborated with the chemist Gonçalo Bernardes at Instituto de Medicina Molecular (IMM, Portugal) and Cambridge University to develop a novel technique. The research team modified a widely used molecular tool, which is based on the use of diphtheria toxin. This toxin only kills cells that contain its receptor, which mice typically do not have, unless it is artificially introduced in specific cells that scientists want to study. The team genetically introduced the diphtheria toxin receptor in the fat-innervating neurons of mice, which would then render neurons susceptible to the deadly action of the toxin. However, the genetic engineering also placed the diphtheria toxin receptor in other neurons in the brain that the researchers did not want to ablate. "The problem is that diphtheria toxin can cross the blood-brain barrier. Therefore, we could not use this molecular tool to eliminate peripheral neurons without affecting similar neurons that also exist in the brain", explains Ana Domingos.

To face this problem, the research team decided to chemically modify the diphtheria toxin, increasing its size and therefore limits its access to the brain. "Big molecules tend not to enter the brain, so we made the toxin bigger", further explains Ana Domingos.

Ines Mahu, PhD student in Domingos' laboratory and author of this study, describes their results: "We were able to eliminate neurons from the adipose tissue of mice, without affecting the brain. When comparing mice with or without those peripheral neurons, we observed a similar eating behavior. However, mice that lacked the sympathetic neurons became fat very quickly." "We never saw animals getting fat so fast", adds Mafalda Pereira, the lead author of this study who was a master student at IGC, and is currently a PhD student at the Max Planck Institute for Metabolism Research in Cologne, Germany.

"This new technique allowed us to verify the importance of the neurons that innervate the adipose tissue to maintain a normal adiposity. But most importantly, it overcomes possible side effects in the brain that could result from the limitations of the previous technique. We can now perform genetic ablation outside the brain, and study the function of many peripheral cells not only for obesity but for several other diseases", highlights Ana Domingos.

###

This work was conducted at Instituto Gulbenkian de Ciência, in collaboration with researchers from Instituto de Medicina Molecular (Portugal), University of Santiago de Compostela (Spain), the Rockefeller University (USA), Yale University (USA), and University of Cambridge (UK). This work was funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal), the European Molecular Biology Organization (EMBO), and the European Community's Seventh Framework Programme.

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Share14Tweet8Share2ShareShareShare2

Related Posts

Nanopores Boost Photocatalytic Methane to C3+ Hydrocarbons

Nanopores Boost Photocatalytic Methane to C3+ Hydrocarbons

August 19, 2025
Aggresomes Safeguard E. coli mRNA During Stress

Aggresomes Safeguard E. coli mRNA During Stress

August 19, 2025

Ultrafast Charging of 2D Polymer Cathodes via Cross-Flow

August 19, 2025

Fluorescent Dual Agonist Probes Map Pancreas, Brain Cells

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanopores Boost Photocatalytic Methane to C3+ Hydrocarbons

Aggresomes Safeguard E. coli mRNA During Stress

Ultrafast Charging of 2D Polymer Cathodes via Cross-Flow

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.